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Abstract

We present a mechanism which lifts a multiplicative lattice to a (weak) ideal system
on some monoid.
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1 Introduction

A multiplicative lattice is a complete lattice with least element 0 and greatest element 1, on
which there is defined a commutative completely join distributive monoid operation whose
identity is 1. We write simply lattice to mean a multiplicative lattice. By a monoid we
mean a commutative monoid with identity element 1 and zero element 0.

A (weak) ideal system on some monoid (see Definition 2.1) gives the multiplicative lat-
tice of its r-ideals (see Theorem 2.2). In this short paper we take the inverse direction
providing a lifting procedure of multiplicative lattices to (weak) ideal systems. This proce-
dure is inspired by the work of Aubert [3] and Lediaev [6] where there are results on lifting
multiplicative lattices to x-systems.

We obtain the following results. Let L be a lattice and H a submonoid of L generating L
as a lattice (such H is named in this paper a wire, see Definition 2.3). Then H gives a weak
ideal system r on H (Theorem 2.4, Corollary 2.5 and Proposition 2.7). This r is an ideal
system iff H is a so-called M-wire (see Definition 2.3). A lattice which is liftable to an ideal
system is generated by meet principal elements, while a lattice domain which is generated
by principal elements is liftable to an ideal system (Proposition 2.7). See the definition for
”(meet) principal element” in the next paragraph. In Proposition 2.9 we investigate some
M-wires of the lattice N (with usual number multiplication where

∨
= gcd and

∧
= lcm)

given by the norm function of a ring of quadratic integers. As an application of our results,
we give a natural procedure to associate to a given lattice L another lattice L′ generated
by compact elements (see Remark 2.11 and Example 2.12).

Let L be a lattice. Denote by ∨ resp. ∧ its join resp. meet. If a, b ∈ L, we denote by
[a, b] the interval {x ∈ L|a ≤ x ≤ b}. For a, b ∈ L, (a : b) is the join of all y ∈ L with
by ≤ a. Recall the following definitions due to Dilworth [4]. An element x ∈ L is said to be
meet principal if a∧ xb = x((a : x)∧ b) for all a, b ∈ L. Next x is called weak meet principal
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if the preceding equality holds for all a ∈ L and b = 1. An element x ∈ L is said to be join
principal if a ∨ (b : x) = (ax ∧ b) : x for all a, b ∈ L. Next x is called weak join principal if
the preceding equality holds for all a ∈ L and b = 0. Finally x ∈ L is called (weak) principal
if it is both (weak) meet principal and (weak) join principal.

An element x ∈ L is said to be compact if x ≤
∨

A with A ⊆ L implies x ≤
∨

B for
some finite subset B of A. We say that a subset C of L generates L if every element of L
is a join of some elements in C. Any undefined notation or terminology is standard as in
[5] or [1].

2 Results

We recall the definition of a (weak) ideal system cf. [5, Chapter 2].

Definition 2.1. Let H be a monoid. A weak ideal system on H is a map r : P(H) → P(H)
satisfying the following axioms:

(s1) XH ⊆ Xr for all X ⊆ H,
(s2) X ⊆ Y ⊆ H implies Xr ⊆ Yr

(s3) (Xr)r = Xr for all X ⊆ H,
(s4) cXr ⊆ (cX)r for all X ⊆ H and c ∈ H.

A weak ideal system r is called an ideal system if equality always holds in (s4). Also a
(weak) ideal system r is said to be finitary if

(s5) Xr =
∪
{Zr|Z finite subset of X} for all X ⊆ H.

The elements in the image of r are called r-ideals.

The next result follows immediately from [5, Propositions 2.1 and 2.3] and definitions.

Theorem 2.2. Let H be a monoid and r a weak ideal system on H. Then the set

Ir(H) := {Xr | X ⊆ H}

of all r-ideals of H is a lattice with respect to the following operations
multiplication: (X,Y ) 7→ (XY )r for all X,Y ∈ Ir(H),
join:

∨
Γ := (

∪
Γ)r for all Γ ⊆ Ir(H),

meet:
∧
Γ :=

∩
Γ for all Γ ⊆ Ir(H),

where
∪
Γ resp.

∩
Γ are the union resp. intersection of all members of Γ.

If r is finitary, then S =: {{a}r | a ∈ H} is a generating submonoid of the lattice Ir(H)
consisting of compact elements.

Let L be a lattice. We look for a weak ideal system r whose r-ideal lattice Ir(H) is
isomorphic to L. In this case we say that r is a lifting of L or that L is liftable (to r).
Getting inpiration from [3] and [6], we introduce the following concept.

Definition 2.3. Let L be a lattice. By a wire H ⊆ L we mean a submonoid of L which
generates L as lattice. A wire H is called an M-wire if it satisfies the following condition:

(M) if s ≤ ta with s, t ∈ H and a ∈ L, then s = tu for some u ∈ H ∩ [0, a].

The next theorem is the main result of the paper.
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Theorem 2.4. Let H be a wire of a lattice L. Then the map

r : P(H) → P(H) given by Xr = H ∩ [0,
∨

X].

is a weak ideal system which is a lifting of L.

Proof. We check that r satisfies conditions (w1) to (w4) of Definition 2.1. Let X ⊆ Y ⊆ H.
For h ∈ H and x ∈ X, we have hx ≤ x ≤

∨
X, so hx ∈ Xr, thus (w1) holds. Since

X ⊆ Y ⊆ H, we have
∨
X ≤

∨
Y , so

Xr = H ∩ [0,
∨

X] ⊆ H ∩ [0,
∨

Y ] = Yr

thus (w2) holds. As H generates L, we have∨
Xr =

∨
(H ∩ [0,

∨
X]) =

∨
X

so
(Xr)r = H ∩ [0,

∨
Xr] = H ∩ [0,

∨
X] = Xr

thus (w3) holds. For c ∈ H we have

cXr = c(H ∩ [0,
∨

X]) ⊆ H ∩ [0,
∨

cX] = (cX)r

so condition (w4) holds. We show that L is isomorphic to the lattice of r-ideals Ir(H).
Consider the maps

f : Ir(H) → L given by X 7→
∨

X

and
g : L → Ir(H) given by y 7→ H ∩ [0, y].

As L is generated by H, we have
∨
g(y) = y, so g(y) is indeed an r-ideal of H.

For X ∈ Ir(H), we have

(gf)(X) = H ∩ [0,
∨

X] = Xr = X.

Also, for y ∈ L, we have

(fg)(y) =
∨

(H ∩ [0, y]) = y

as noticed above. Hence f and g are inverse to each other. For X,Y ∈ W , we have

f((XY )r) =
∨

(XY )r =
∨

(XY ) = (
∨

X)(
∨

Y ) = f(X)f(Y )

so f is a monoid morphism. If X,Y ∈ Ir(H) and X ⊆ Y , then

f(X) =
∨

X ≤
∨

Y = f(Y ).

Conversely, if x, y ∈ L and x ≤ y, then

g(x) = H ∩ [0, x] ⊆ H ∩ [0, y] = g(y).

Hence f and g are increasing maps. Thus f is a lattice isomorphism.
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Corollary 2.5. Under the assumptions of Theorem 2.4, we have
(i) r is an ideal system iff H is an M -wire.
(ii) r is finitary iff H consists of compact elements.

Proof. (i) implication (⇐). Let h, c ∈ H such that h ≤ c(
∨

X). As H is an M-wire, we get
h = ck for some k ∈ H with k ≤

∨
X. Since L is generated by H, we have

(cX)r = H ∩ [0,
∨

cX] = H ∩ [0, c(
∨

X)] ⊆ c(H ∩ [0,
∨

X]) = cXr

so (s4) holds. Thus r is an ideal system.
(i) implication (⇒). Suppose that s ≤ ta with s, t ∈ H and a ∈ L. Since H generates

L, a =
∨
X for some X ⊆ H. Then s ∈ (tX)r = tXr, so s = tu for some u ∈ H with u ≤ a.

(ii) implication (⇐). Let X ⊆ H and a ∈ Xr; so a ≤
∨

X. As a is compact we get
a ≤

∨
Z for some finite subset of Z of X. Thus a ∈ Zr, so r is finitary.

(ii) implication (⇒). Let s ∈ H and {aα}α∈I ⊆ L such that s ≤
∨

α∈I aα. Write
aα =

∨
Xα with Xα ⊆ H. Then s ∈ (

∪
α∈I Xα)r, so s ∈ (

∪
α∈J Xα)r for some finite subset

J ⊆ I since r is finitary. We get s ≤
∨

α∈J aα so s is compact.

Example 2.6. Consider the lattice L = {0, 1, a, b, c, d} ordered by a ≤ b ≤ d and a ≤ c ≤ d
with multiplication

xy = 0 for all x, y ∈ {a, b, c, d}.

It’s easy to check that H = {0, a, b, c, 1} is a wire, so L lifts to a weak ideal system r whose
r-ideals are

{0}, {0, a}, {0, a, b}, {0, a, c}, {0, a, b, c}, {0, a, b, c, 1}

cf. Theorem 2.4. As the weak meet elements are 0, a and 1 is not liftable to an ideal system,
cf. Proposition 2.7 (ii).

A lattice L is called a domain lattice if ab = 0 with a, b ∈ L implies a = 0 or b = 0.

Proposition 2.7. The following assertions are true.
(i) Any lattice can be lifted to a weak ideal system.
(ii) A lattice which is liftable to an ideal system is generated by meet principal elements.
(iii) A lattice domain which is generated by principal elements is liftable to an ideal

system.

Proof. Let L be a lattice. (i) follows by applying Theorem 2.4 for H = L.
(ii) Suppose that L is liftable to an ideal system r on a monoid H. Since the principal

r-ideals aH = {a}r, a ∈ H, generate Ir(H) it suffices to show that each aH is a meet
principal element of Ir(H). Indeed, if A,B are r-ideals, we have the obvious equality
A ∩Ba = a((A : a) ∩B).

(iii) Suppose that L is generated by its subset H of principal elements. By [4, Corollary
3.3], H is a submonoid of L, so H is a wire. Suppose that s ≤ ta with s, t ∈ H and a ∈ L.
As t is principal, s = tu for some u ≤ a in H cf. [2, Theorem 7]. So H is an M-wire, hence
L is liftable to an ideal system cf. Theorem 2.4.
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Example 2.8. Consider the lattice N with usual number multiplication where
∨

= gcd and∧
= lcm. Let D be a ring of algebraic integers. Sending each X ⊆ D into Xr = the ideal

generated by X, we get an ideal system whose r-ideal lattice is the usual ideal lattice ID of
D. Note that the set of principal ideals of D is an M-wire of ID. It is well-known that ID
is isomorphic to N. So the lattice N can be lifted to an ideal system in infinitely many ways
and it has infinitely many M-wires. Our next result explores some M-wires of N given by
the norm function on a ring of quadratic integers.

Let D be a nonfactorial ring of quadratic integers with class group G and let N : D → N
the absolute value of its norm function. Let S be the multiplicatively closed subset of N
generated by the image Im(N) of N and the set I of all prime numbers which are inert in
D.

Proposition 2.9. With notation above, S is an M-wire on the lattice N (see Example 2.8)
iff G is a finite product of copies of Z2.

Proof. We shall use repeatedly the following well-known Number Theory facts: D is a
Dedekind domain, G is finite and every class g ∈ G contains infinitely many prime ideals of
D. We first prove that S generates N as a lattice (i.e. S is a wire). It suffices to show that
every prime number p ∈ N − I is the gcd of some numbers in S. Take a prime ideal P of
norm p. If P is principal, then p ∈ S. Suppose that P is not principal and let e be its class
in G. Inside −e take another two prime ideals Q and R of norms q and r respectively. We
may arrange that p, q, r are distinct. As PQ and PR are principal ideals, we get pq, pr ∈ S
and p is their gcd.

Therefore, we may assume from the very beginning that S is a wire. It’s easy to see
that S is an M -wire iff S is closed under division iff Im(N) is closed under division (i.e.
if a, b ∈ Im(N) − {0} and a|b, then b/a ∈ Im(N)). So it remains to show that Im(N) is
closed under division iff G is a finite product of copies of Z2.

Suppose that Im(N) is closed under division. Then G has no odd order element. Deny.
Let P be a prime ideal of D whose ideal class has odd order m and let p be the norm of P .
Then pm ∈ Im(N) and, since p2 is clearly in Im(N), we get that p ∈ Im(N), as Im(N)
is closed under division. But this is a contradiction because P is not principal. To show
that G is a finite product of copies of Z2, it suffices to prove that G has no element of order
four. Deny. Let g ∈ G of order four. Select prime ideals P,Q of norms p, q in classes g, 2g
respectively. Denote the conjugate of P by P . Since PP and P 2Q are principal ideals, we
get that p2 and p2q are in Im(N), so q ∈ Im(N), as Im(N) is closed under division. But
this is a contradiction because Q is not principal.

Conversely, suppose that G is a finite product of copies of Z2. Let a, b ∈ D − {0}
such that N(a) | N(b). Since D is a Dedekind domain, we may consider the prime power
factorizations aD = P1 · · ·Pn and bD = Pn+1 · · ·Pm. We use now the fact that each element
in G has order ≤ 2. We replace some of the factors Pi by their conjugate such that finally
no pair of distinct conjugates appears in list {P1, ..., Pm}. Doing this we change a and b
but we preserve their norm. Moreover, in the new setup it follows that a divides b, so
N(b)/N(a) = N(b/a) ∈ Im(N).

Remark 2.10. With notation above, S is an M-wire on the lattice N provided D = Z[
√
−5]

(since its class group is Z2) but S is not an M-wire on the lattice N if D = Z[
√
−17] since
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its class group is Z4 or N(5 +
√
−17) = 42, N(2 +

√
−17) = 21 but there is not a single

element in Z[
√
−17] of norm 2.

We put Theorem 2.4 to work. Let r be a weak ideal system on a monoid H. Recall that
the map rs : P(H) → P(H) given by

Xrs =
∪

{Zr|Z finite subset of X} for all X ⊆ H

is a finitary weak ideal system called the finitary weak ideal system associated to r. See [5,
Chapter 3] for details.

Remark 2.11. We give the following application of Theorem 2.4. To a lattice L we can
canonically associate a lattice L′ generated by compact elements. Let r be the ideal system
on H constructed in Theorem 2.4 for H = L. Let rs be the finitary weak ideal system
associated to r recalled above. By Theorem 2.2, the lattice L′ = Irs(H) of all rs-ideals of H
is generated by compact elements. By Theorem 2.4 and the definition of rs we get

Xrs = {h ∈ L | h ≤ h1 ∨ ... ∨ hn for some h1, ..., hn ∈ X}.

We get the set embedding

L → L′, x 7→ [0, x]

which is a lattice isomorphism when L is generated by compact elements, because in that
case r = rs.

Example 2.12. As an illustration of Remark 2.11 consider the lattice L = [0, 1] ⊆ R with
usual number multiplication with

∨
= sup and

∧
= inf . No nonzero element x of L is

compact because

x =
∨

{x− 1/n | n ≥ 1/x, n ∈ N}

but any finite subjoin is < x. Performing the construction in Remark 2.11 we get the lattice

L′ = A ∪B with A = { [0, x] | x ∈ [0, 1]} and B = { [0, x) | x ∈ [0, 1]}.

The multiplication in L′ is the usual interval multiplication. For X ⊆ L with a = sup(X),
we get that Xrs is [0, a] resp. [0, a) if a ∈ X resp. a /∈ X . Each element of A is compact
in L′.
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