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Abstract

We study the homological shifts of polymatroidal ideals. In our main theorem
we prove that the first homological shift ideal of any polymatroidal ideal is again
polymatroidal, supporting a conjecture of Bandari, Bayati and Herzog that predicts
that all homological shift ideals of a polymatroidal ideal are polymatroidal. As a
nice consequence, we recover a result of Bayati which proves this conjecture in the
squarefree case.
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1 Introduction

The study of the minimal free resolutions of monomial ideals is a main topic in combina-
torial commutative algebra. Let K be a field, I a monomial ideal of the standard graded
polynomial ring S = K[x1, . . . , xn] and F be its minimal multigraded free S-resolution.

Then, the free modules in the resolution F are of the form Fi =
⊕βi(I)

j=1 S(−ai,j), where ai,j
are integral vectors with non negative entries, called the multigraded shifts of I. For an
integral vector a = (a1, a2, . . . , an), we let xa = xa1

1 xa2
2 · · ·xan

n . Using this notation, the ith
homological shift ideal of I is defined as HSi(I) = (xai,j : j = 1, . . . , βi(I)), see [15]. Note
that HS0(I) = I and HSj(I) = (0) for j > pd(I).

The basic goal of this theory is to understand how much of the homological and combi-
natorial properties of a monomial ideal I are inherited by its homological shift ideals. We
refer to any combinatorial or homological property enjoyed by HS0(I) = I and by HSj(I),
for all 1 ≤ j ≤ pd(I), as an homological shift property of I. This rather new trend of
research, see [3, 4, 5, 6, 7, 8, 9, 15, 16], has its origins in a meeting between Somayeh
Bandari, Shamila Bayati and Jürgen Herzog that took place in Essen in 2012. Due to
experimental evidence, the three authors conjectured that the property of being polyma-
troidal is an homological shift property. For a monomial u, we define the xi-degree of u
as degxi

(u) = max{j : xj
i divides u}. Recall that a polymatroidal ideal I is an equigener-

ated monomial ideal of S whose minimal generating set G(I) corresponds to the base of a
discrete polymatroid. The bases of a discrete polymatroidal can be characterized in term
of the so–called exchange property. Thus an ideal I ⊂ S is polymatroidal if and only if
the following exchange property holds: for all u, v ∈ G(I) such that degxi

(u) > degxi
(v),

there exists j such that degxj
(u) < degxj

(v) and xj(u/xi) ∈ G(I). The Bandari–Bayati–
Herzog conjecture is widely open. Until now it is solved only in two cases: for squarefree
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polymatroidal, i.e., matroidal ideals [3], and for polymatroidal ideals that satisfy the strong
exchange property [15].

Polymatroidal ideals are one of the most distinguished classes of monomial ideals. In-
deed, the product of polymatroidal ideals is polymatroidal. Any polymatroidal ideal has
linear quotients and thus a linear resolution. Thus, they have linear powers, [12, Corollary
12.6.4], a rare property among monomial ideals. In this paper our aim is to study the
homological shift ideals of polymatroidal ideals. See also [1, 2, 11, 13, 17, 19, 20].

The paper is organized as follows. In Section 2, we collect some basic facts on homo-
logical shift ideals of equigenerated monomial ideals with linear quotients. Recall that a
monomial ideal I ⊂ S has linear quotients if for some admissible order u1 > · · · > um of its
minimal generating set G(I), the colon ideals (u1, . . . , uk−1) : uk are generated by a subset
of the variables, for k = 2, . . . ,m. Quite generally, to determine the ideals HSj(I) for a
monomial ideal I is difficult. Nonetheless, this is easy for ideals with linear quotients as
shown in Proposition 1.

In Section 3, we prove our main theorem. We are able to show that HS1(I) is poly-
matroidal if I is polymatroidal (Theorem 1). This is the first result valid for all polyma-
troidal ideals, that supports Conjecture 1. Our proof is based on Proposition 2, whose
main advantage consists in the fact that HS1(I) does not depend upon the admissible or-
der of I. To study the higher homological shift ideals, firstly we note that for j ≥ 1,
HSj+1(I) ⊆ (HS1(HSj(I)))>j+1, (Corollary 1), where J>j+1 is the monomial ideal with
G(J>j+1) = {u ∈ G(J) : |supp(u)| > j + 1} as a minimal generating set and supp(u) =
{i : xi divides u}. Unfortunately, equality in the above inclusion does not hold in general,
(Example 1). Nonetheless, it holds for matroidal ideals, (Proposition 4). As a consequence
Conjecture 1 holds for all matroidal ideals, (Corollary 2). It would be of interest to clas-
sify all polymatroidal ideals satisfying the equation HSj+1(I) = (HS1(HSj(I)))>j+1 for all
j < pd(I).

2 Generalities on homological shift ideals

Let S = K[x1, . . . , xn] be the standard graded polynomial ring over a field K. For a
monomial u = xa1

1 · · ·xan
n ∈ S, the vector a = (a1, . . . , an) is called the multidegree of u.

We put u = xa. For a = 0 = (0, 0, . . . , 0), x0 = 1. Whereas deg(u) = a1 + a2 + · · · + an
is the degree of u. Let G(I) be the unique minimal monomial generating set of I, and
G(I)d = {u ∈ G(I) : deg(u) = d}.

Definition 1. Let I ⊂ S be a monomial ideal, and let (F, ∂) be the minimal multigraded
free resolution of I. The ith homological shift ideal of I is defined as

HSi(I) = (xa : βi,a(I) ̸= 0).

Here βi,a(I) is a multigraded Betti number.

Clearly HS0(I) = I and HSj(I) = (0) for j > pd(I). In general, we ask what properties
of I are inherited by its homological shift ideals.

Let I be a monomial ideal with minimal generating set G(I) = {u1, . . . , um}. We say
that I has linear quotients with respect to the order u1 > · · · > um of its minimal generators,
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if for all k = 2, . . . ,m, the colon ideal (u1, . . . , uk−1) : uk is generated by a subset of the
variables, x1, . . . , xn. Any such ordering of G(I) is called an admissible order of I. Set

set(uk) = {i : xi ∈ (u1, . . . , uk−1) : uk},

for k = 2, . . . ,m and set(u1) = ∅. Furthermore, put xF =
∏

i∈F xi if F is non empty, and
x∅ = 1. By [18, Lemma 1.5], we have the following result.

Proposition 1. Let I ⊂ S be a monomial ideal with linear quotients with admissible order
u1 > · · · > um of G(I). Then,

HSj(I) = (xFu : u ∈ G(I), F ⊆ set(u), |F | = j). (2.1)

Let u = xa ∈ S, the xi-degree of u is degxi
(u) = max{j : xj

i divides u} = ai. Given
monomials of the same degree u, v ∈ S, the distance between u and v is

d(u, v) =
1

2

n∑
i=1

∣∣ degxi
(u)− degxi

(v)
∣∣.

Lemma 1. Let u, v monomials of S of the same degree. Then, u = xk(v/xℓ) for some
k ̸= ℓ, if and only if d(u, v) = 1.

Proof. Let v = xb1
1 · · ·xbn

n , then u = xk(v/xℓ) = (
∏

i ̸=k,ℓ x
bi
i )xbk+1

k xbℓ−1
ℓ . Note that

∣∣ degxi
(u)− degxi

(v)
∣∣ =


|bℓ − 1− bℓ| if i = ℓ,

|bk+ 1− bk| if i = k,

0 otherwise.

Thus d(u, v) = 1
2

∑
i | degxi

(u)− degxi
(v)| = 1

2

(
|bk +1− bk|+ |bℓ − 1− bℓ|

)
= 1

2 (1 + 1) = 1.

Conversely, assume d(u, v) = 1. From the definition of d(u, v) it is clear that either
u = x2

kv or u = xk(v/xℓ), for some k ̸= ℓ. But the first possibility does not occur, lest
deg(u) > deg(v). Therefore, the desired conclusion follows.

Combining Lemma 1 with [15, Proposition 1.3] we have

Proposition 2. Let I ⊂ S be an equigenerated monomial ideal with linear quotients. Then

HS1(I) = (lcm(u, v) : u, v ∈ G(I), d(u, v) = 1).

Let ≻ be a monomial order on S. Up to a relabeling on the variables, we may assume
that x1 ≻ · · · ≻ xn. We say that ≻ is induced by x1 > · · · > xn. We say that I has linear
quotients with respect to ≻ if I has linear quotients with admissible order u1 ≻ u2 ≻ · · · ≻
um of G(I). A particular monomial order is the lex order >lex induced by x1 > · · · > xn.
Let xa,xb be monomials of S. Then xa >lex xb if a1 = b1, . . . , as−1 = bs−1 and as > bs,
for some 1 ≤ s ≤ n.

We set [n] = {1, 2, . . . , n}. For a monomial u ∈ S, we define its support as supp(u) =
{i ∈ [n] : degxi

(u) > 0} and we set max(u) = max supp(u).
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Lemma 2. Let I ⊂ S be an equigenerated monomial ideal with linear quotients with respect
to ≻ induced by x1 > · · · > xn. Then, for all u ∈ G(I),

set(u) ⊆ [max(u)− 1].

Proof. Indeed, let G(I) ordered as u1 ≻ · · · ≻ um and let j ∈ {1, . . . ,m}. If i ∈ set(uj),
then xiuj ∈ (u1, . . . , uj−1). Since deg(u1) = · · · = deg(uj−1) = deg(uj), there exists
s ∈ supp(uj), s ̸= i such that xi(uj/xs) = up for some p ≤ j − 1. But xi(uj/xs) = up ≻ uj .
Since ≻ is a monomial order, this implies that xiuj ≻ xsuj , thus xi ≻ xs. Hence i < s. But
s ≤ max(uj) and so i < max(uj).

In [15], the following general inclusion was shown.

Proposition 3. [15, Proposition 1.4] Let I ⊂ S be a monomial ideal with linear quotients.
Then HSj+1(I) ⊆ HS1(HSj(I)), for all j.

However, in general HSj+1(I) ̸= HS1(HSj(I)). Let I = (x2x4, x1x2, x1x3). Then I
has linear quotients with admissible order x2x4 > x1x2 > x1x3. We have HS1(I) =
(x1x2x3, x1x2x4) and HS2(I) = (0), but HS1(HS1(I)) = (x1x2x3x4) ̸= (0) = HS2(I).

For a monomial ideal J ⊂ S, let J>ℓ be the monomial ideal whose minimal generating
set is G(J>ℓ) = {u ∈ G(J) : |supp(u)| > ℓ}.

Corollary 1. Let I ⊂ S be an equigenerated monomial ideal with linear quotients with
respect to a monomial order ≻ (e.g., >lex) induced by x1 > · · · > xn. Then,

HSj+1(I) ⊆
(
HS1(HSj(I))

)
>j+1

.

Proof. For j = 0 the assertion is immediate. Let j > 0. Firstly we show the inclusion
HSj+1(I) ⊆ HS1(HSj(I)). By Proposition 2,

HS1(HSj(I)) = (lcm(w1, w2) : w1, w2 ∈ G(HSj(I)), d(w1, w2) = 1).

Take w = xFu ∈ G(HSj+1(I)) with u ∈ G(I), F ⊆ set(u) and |F | = j + 1. Since
j + 1 ≥ 2 we can find r, s ∈ F , r ̸= s. Then w1 = xF\{r}u,w2 = xF\{s}u ∈ G(HSj(I))
and d(w1, w2) = 1. Thus lcm(w1, w2) = w ∈ G(HS1(HSj(I))), as desired. It remains to
prove that any w = xFu ∈ G(HSj+1(I)) has supp(w) > j + 1. By Lemma 2 we have
F ⊆ set(u) ⊆ [max(u) − 1]. Hence max(u) /∈ F and F ∪ {max(u)} ⊆ supp(w), and since
|F | = j + 1 we have that supp(w) ≥ |F |+ 1 = j + 2, as desired.

3 The first homological shift ideal of polymatroidal ide-
als

Recall that an equigenerated monomial ideal I ⊂ S is a polymatroidal ideal if it satisfies
the following exchange property,
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(∗) for all u, v ∈ G(I) and all i such that degxi
(u) > degxi

(v), there exists j with
degxj

(u) < degxj
(v) and such that xj(u/xi) ∈ G(I).

Such ideals are called polymatroidal because their minimal generating set G(I) corresponds
to the basis of a discrete polymatroid, see [12, Chapter 12] for more information on this
subject. For later use, we recall that a polymatroidal ideal satisfies also the following dual
exchange property, [11, Lemma 2.1],

(∗∗) for all u, v ∈ G(I) and all j such that degxj
(u) < degxj

(v), there exists i with
degxi

(u) > degxi
(v) and such that xj(u/xi) ∈ G(I).

It is expected that the following is true.

Conjecture 1. (Bandari–Bayati–Herzog), [3, 15]. Let I ⊂ S be a polymatroidal ideal.
Then all homological shift ideals HSj(I) are again polymatroidal, for all j ≥ 0.

It is known that a polymatroidal ideal I ⊂ S has linear quotients with respect to the
lex order induced by x1 > · · · > xn, see [2, Theorem 2.4]. Using the description of HS1(I)
given in Proposition 2 we can prove

Theorem 1. Let I ⊂ S = K[x1, . . . , xn] be a polymatroidal ideal. Then HS1(I) is a
polymatroidal ideal.

Proof. By Proposition 2,

HS1(I) = (xiu : u ∈ G(I), i ∈ set(u))

= (lcm(u, v) : u, v ∈ G(I), d(u, v) = 1).

We must prove the following exchange property,

(∗) for all monomials u, v ∈ G(I), all integers k ∈ set(u), ℓ ∈ set(v) such that u1 =
xku ̸= xℓv = v1 and all i with degxi

(u1) > degxi
(v1), there exists j such that

degxj
(u1) < degxj

(v1) and xj(u1/xi) = xj(xku)/xi ∈ G(HS1(I)).

We may assume that i is different both from k and ℓ. Indeed, if k = i, then as k ∈ set(u)
we have u1 = xpz for some z ∈ G(I) \ {u}, p ̸= k, and we may use the element xpz with
p ̸= k = i. The same reasoning applies for ℓ. In particular, since i ̸= k, i ̸= ℓ and
by hypothesis degxi

(u1) > degxi
(v1), we have degxi

(u) > degxi
(v) as well. Since I is

polymatroidal, the set

Ω = {h ∈ [n] \ {i} : degxh
(u) < degxh

(v) and xh(u/xi) ∈ G(I)}.

is non empty. Let h ∈ Ω and set w = xh(u/xi). We distinguish two cases.

Case 1. Suppose that k ∈ Ω. For h = k ∈ Ω, we have degxk
(u) < degxk

(v) and w =
xk(u/xi) ∈ G(I). We distinguish two more cases.

Subcase 1.1. Assume w = v. By hypothesis v1 = xℓv ∈ G(HS1(I)). We show that the
property (∗) is verified for the integer j = ℓ. Indeed, as i ̸= ℓ and w = v,

degxℓ
(u1) = degxℓ

(xku) = degxℓ
(xku/xi) = degxℓ

(w)

= degxℓ
(v) < degxℓ

(xℓv),
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and v1 = xℓv = xℓw = xℓ(xku)/xi ∈ G(HS1(I)), as desired.

Subcase 1.2. Assume w ̸= v. Thus, for some r, degxr
(w) > degxr

(v). Since I is poly-
matroidal, there exists an integer m with degxm

(w) < degxm
(v) and such that w1 =

xm(w/xr) ∈ G(I). Clearly m ̸= r. Hence, Lemma 1 implies that d(w,w1) = 1 and
Proposition 2 implies that

lcm(w,w1) = xmw = xm(xℓu)/xi ∈ G(HS1(I)). (3.1)

It remains to prove that the integer m satisfies the first condition of property (∗), namely
degxm

(u1) < degxm
(v1). First note that m ̸= i. Lest, if i = m, by hypothesis degxi

(w) <
degxi

(v) and then degxi
(u) = degxi

(w) + 1 ≤ degxi
(v), against the fact that degxi

(u) >
degxi

(v). Thus, since m ̸= i, we have degxm
(u) ≤ degxm

(w) < degxm
(v). This inequality

together with equation (3.1) show that the integer j = m satisfies the property (∗) in such
a case.

Case 2. Suppose that k /∈ Ω. Nonetheless, for some h ∈ Ω, with h ̸= k, we have
degxh

(u) < degxh
(v) and w = xh(u/xi) ∈ G(I). Since k ∈ set(u), there exist z ∈ G(I),

z ̸= u and xp ̸= xk such that u1 = xku = xpz.

Subcase 2.1. Suppose d(w, z) = 1. As h ∈ Ω but k /∈ Ω we have h ̸= k. Thus, as
w = xh(u/xi) and z = xk(u/xp) it follows that p = i, lest d(w, z) > 1. Hence p = i and
Proposition 2 implies

lcm(w, z) = lcm(xh(u/xi), xk(u/xp)) = xh(xku)/xi ∈ G(HS1(I)).

Finally, we just need to check that degxh
(u1) < degxh

(v1). Indeed, as h ̸= k,

degxh
(xku) = degxh

(u) < degxh
(v) ≤ degxh

(xℓv).

Subcase 2.2. Suppose d(w, z) > 1. Then p ̸= i, lest d(w, z) = 1 by Subcase 2.1. Thus
d(w, z) = d(xh(u/xi), xk(u/xp)) = 2, i ̸= h, h ̸= k, k ̸= p, p ̸= i and

degxi
(w) < degxi

(z), degxh
(w) > degxh

(z),

degxk
(w) < degxk

(z), degxp
(w) > degxp

(z).

Moreover, for all q ̸= i, h, k, p we have degxq
(w) = degxq

(z). Since w, z ∈ G(I) and
degxi

(z) > degxi
(w) we have z1 = xh(z/xi) ∈ G(I) or z2 = xp(z/xi) ∈ G(I). We distin-

guish two more cases.

Subcase 2.2.1. Suppose z1 = xh(z/xi) ∈ G(I). Note that

xp(z1/xk) = xp(xh(z/xi))/xk = xpxhxk((u/xp)/xi)/xk = xh(u/xi) = w.

Since k ̸= p, Lemma 1 implies that d(z1, w) = 1. Thus, by Proposition 2

lcm(z1, w) = lcm(xh(z/xi), xh(u/xi))

= lcm(xh(xk(u/xp)/xi), xh(u/xi))

= xh(xku)/xi ∈ G(HS1(I)),
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and the property (∗) is satisfied as h ∈ Ω, that is degxh
(u) < degxh

(v) and as h ̸= k, we
have degxh

(u1) = degxh
(xku) = degxh

(u) < degxh
(v) ≤ degxh

(xℓv) = degxh
(v1).

Subcase 2.2.2. Suppose z2 = xp(z/xi) ∈ G(I). Note that

z2 = xp(z/xi) = xp(xk(u/xp)/xi) = xk(u/xi)

and d(z2, w) = 1. Thus, Proposition 2 implies that

lcm(z2, w) = lcm(xk(u/xi), xh(u/xi)) = xh(xku)/xi ∈ G(HS1(I)),

and as before degxh
(u1) < degxh

(v1). The proof is complete.

By [2, Theorem 2.4], a polymatroidal ideal I ⊂ S has linear quotients with respect to
the lex order >lex (induced by any ordering of the variables x1, . . . , xn). Thus Corollary 1
implies that for all j ≥ 0,

HSj+1(I) ⊆
(
HS1(HSj(I))

)
>j+1

.

Next we study when equality holds. This is the case when I is actually matroidal, that
is, a squarefree polymatroidal ideal [3, Corollary 2.3]. The proof in [3] uses matroid and
graph theory. We provide a purely algebraic proof. Firstly, we note the following general
fact.

Lemma 3. Let I ⊂ S be a squarefree ideal. Then, for all j ≥ 0,(
HS1(HSj(I))

)
>j+1

= HS1(HSj(I)).

Proof. Since I is squarefree, all HSj(I) are squarefree. It follows from [14, Lemma 4.4] that
all monomials w ∈ G(HSj(I)) have |supp(w)| > j.

It is clear that (HS1(HSj(I)))>j+1 ⊆ HS1(HSj(I)). We show the opposite inclusion. Let
y ∈ G(HS1(HSj(I))). We claim that |supp(y)| > j + 1. By Proposition 2, y = lcm(w1, w2)
with w1, w2 ∈ G(HSj(I)) such that d(w1, w2) = 1. By Lemma 1, w1 = xk(w2/xℓ) for
some k ̸= ℓ. Thus y = lcm(w1, w2) = xℓw1. We have shown that w1 ∈ G(HSj(I)) has
|supp(w1)| ≥ j + 1. Since ℓ /∈ supp(w1), |supp(y)| = 1 + |supp(w1)| ≥ j + 2 > j + 1, as
desired.

Proposition 4. Let I ⊂ S be a matroidal ideal. Then HSj+1(I) = HS1(HSj(I)) for all
j < pd(I).

Proof. Since I is squarefree, all homological shift ideals involved in the proof are squarefree.
Fix the lex order >lex induced by x1 > · · · > xn. Then I has linear quotients with
respect to >lex, [2, Theorem 2.4]. For u ∈ G(I), we denote by set(u) the following set
{i : xi ∈ (v ∈ G(I) : v >lex u) : u}. By equation (2.1),

HSj(I) = (xFu : u ∈ G(I), F ⊆ set(u), |F | = j). (3.2)
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For j = 0, there is nothing to prove. Let 1 ≤ j < pd(I). By Proposition 3 we have
HSj+1(I) ⊆ HS1(HSj(I)). So we only need to prove that HS1(HSj(I)) ⊆ HSj+1(I). By
Proposition 2, we have

HS1(HSj(I)) = (lcm(w1, w2) : w1, w2 ∈ G(HSj(I)), d(w1, w2) = 1).

Thus, we must show that for all w1, w2 ∈ G(HSj(I)) with d(w1, w2) = 1 we have lcm(w1, w2) ∈
G(HSj+1(I)). By equation (3.2), w1 = xFu ̸= w2 = xGv with u, v ∈ G(I), F ⊆ set(u),
G ⊆ set(v) and |F | = |G| = j. Since d(w1, w2) = 1, Lemma 1 gives w1 = xk(w2/xℓ) for some
k ̸= ℓ. As observed before, w1, w2 are squarefree. Hence, supp(w1) = {k}∪(supp(w2)\{ℓ}).
Note that as ℓ ∈ supp(w2), we can find z ∈ G(I) such that ℓ ∈ supp(z). Indeed if ℓ ∈ supp(v)
then we can choose z = v. Otherwise, ℓ ∈ G ⊆ set(v), and xℓv = xsz with z ∈ G(I) \ {v},
s ̸= ℓ and so ℓ ∈ supp(z).

Since ℓ ∈ supp(z) \ supp(u) it is degxℓ
(z) > degxℓ

(u). By the dual exchange property
(∗∗), the set of integers h such that degxh

(u) > degxh
(z) and xℓ(u/xh) ∈ G(I) is non empty.

Hence, the following set is non empty too

Ω = {h ∈ [n] \ {ℓ} : xℓ(u/xh) ∈ G(I)}.

Case 1. Assume there exists h ∈ Ω with h > ℓ. Then xℓ(u/xh) >lex u and ℓ ∈ set(u).
Now lcm(w1, w2) = lcm(w1, xℓ(w1/xk)) = xℓw1 = xℓxFu. Since ℓ /∈ supp(w1), we also have
ℓ /∈ F . Since ℓ ∈ set(u), we have that F ∪ {ℓ} is a subset of set(u) having cardinality j + 1
and lcm(w1, w2) = xF∪{ℓ}u ∈ G(HSj+1(I)) by equation (2.1), as desired.

Case 2. Assume that for all h ∈ Ω we have h < ℓ. Choose some h ∈ Ω. Then, u >lex

xℓ(u/xh) ∈ G(I). Set w = xℓ(u/xh). Hence, this time h ∈ set(w). Note that h ∈ supp(u)
and since w1 = xFu is squarefree, h /∈ F . We are going to show that F ⊆ set(w). Hence,
we will have F ∪ {h} ⊆ set(w) and then the desired conclusion:

lcm(w1, w2) = xℓxFu = xhxF (xℓ(u/xh)) = xF∪{h}w ∈ G(HSj+1(I)).

Let m ∈ F , then for some p ̸= m, xm(u/xp) ∈ G(I) and xm(u/xp) >lex u. So m < p.

Subcase 2.1. Let p = h. Then ℓ > h = p > m. Hence xm(u/xp) = xm(u/xh) >lex

xℓ(u/xh) = w. Whence, m ∈ set(w) in this case, as desired.

Subcase 2.2. Let p ̸= h. Then d(xm(u/xp), w) = d(xm(u/xp), xℓ(u/xh)) = 2, h ̸= m,
h ̸= ℓ, ℓ ̸= m, p ̸= h, p ̸= m, and

degxh
(w) < degxh

(xm(u/xp)), degxℓ
(w) > degxℓ

(xm(u/xp)),

degxm
(w) < degxm

(xm(u/xp)), degxp
(w) > degxp

(xm(u/xp)).

Whereas, for all q ̸= h, ℓ,m, p we have degxq
(w) = degxq

(xm(u/xp)). Since xm(u/xp),
w ∈ G(I) and degxm

(xm(u/xp)) > degxm
(w), by the dual exchange property (∗∗) we have

either xm(w/xℓ) ∈ G(I) or xm(w/xp) ∈ G(I).

Subcase 2.2.1. Assume xm(w/xℓ) ∈ G(I). Note that

xm(w/xℓ) = xm(xℓ(u/xh))/xℓ = xm(u/xh) ∈ G(I).
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Thus m ∈ Ω and by assumption m < ℓ. Hence xm(w/xℓ) >lex w and so m ∈ set(w).

Subcase 2.2.2. Assume xm(w/xp) ∈ G(I). In this case, sincem < p we have xm(w/xp) >lex

w, and again m ∈ set(w). The proof is complete

Proposition 4 and Theorem 1 yield another proof of Conjecture 1 for matroidal ideals,
one was already obtained in [3, Theorem 2.2].

Corollary 2. [3, Theorem 2.2] Let I ⊂ S be a matroidal ideal. Then HSj(I) is again a
matroidal ideal for all j.

Unfortunately, in general we could have HSj+1(I) ̸= (HS1(HSj(I)))>j+1.

Example 1. Let I = (x1, x2, x3, x4)(x3, x4, x5) ⊂ S = K[x1, . . . , x5]. Using the Macaulay2
[10] package HomologicalShiftIdeals [8] we verified that HSj(I) is polymatroidal for all
j. We have HSj+1(J) ̸= (HS1(HSj(J)))>j+1 for j = 1, 2, 3, 4. For instance

(x1x2x3x4x5)x
2
3x

2
4 ∈ G(HS1(HS1(J))) \G(HS2(J)).

Acknowledgment I thank the referee whose suggestions greatly improved the read-
ability and the quality of the paper.
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