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Dedicated to the memory of Professors Orhan Şerafettin İçen and Kamil Alnıaçık

Abstract

We extend a previous result of Kekeç and prove that under certain conditions
rational combinations with algebraic formal power series coefficients of a U1-number
are Um-numbers in the field of formal power series over a finite field.
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1 Introduction

Let p be a prime number and K be a finite field of characteristic p and with q elements.
Denote the ring of polynomials in x with coefficients in K by K[x], the quotient field of
K[x] by K(x) and the degree of a non-zero polynomial a(x) in K[x] by deg(a). Then a
non-Archimedean absolute value | · | is set on K(x) by

|0| = 0 and

∣∣∣∣a(x)b(x)

∣∣∣∣ = qdeg(a)−deg(b),

where a(x) and b(x) are non-zero polynomials in K[x]. The completion of K(x) with
respect to | · | is the field K of formal power series over K. The absolute value | · | is uniquely
extended from K(x) to K and is denoted by the same notation | · |. We uniquely represent
each non-zero element ξ of K as

ξ =

∞∑
h=l

ahx
−h,

where ah ∈ K for h = l, l+1, . . . with al ̸= 0 and l is the rational integer satisfying |ξ| = q−l.
ξ ∈ K is called an algebraic formal power series if it is algebraic over K(x) and a

transcendental formal power series if it is transcendental over K(x). Let P (y) = c0 +
c1y + · · · + cny

n be a non-zero polynomial in y with coefficients in K[x]. The degree of
P (y) with respect to y is denoted by deg(P ) and the height H(P ) of P (y) is defined as
H(P ) = max {|c0|, |c1|, . . . , |cn|}. Let α ∈ K be an algebraic formal power series and P (y)
be its minimal polynomial over K[x]. Then the degree deg(α) of α is defined as deg(P ) and
the height H(α) of α is defined as H(P ). (See Sprindžuk [22] for information on K.)

In 1932, Mahler [17] gave a classification of real numbers. He separated transcendental
real numbers into three disjoint classes called S−, T− and U−numbers. The class of
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U−numbers is subdivided into Um−subclasses (m = 1, 2, 3, . . .). LeVeque [16] established
the first explicit illustrations of Um−numbers for each positive integer m.

The completion of the field Q of rational numbers with respect to the p−adic absolute
value, where p is a prime number, is the field Qp of p−adic numbers. In 1935, Mahler [18]
introduced a classification of p−adic numbers similar to his classification of real numbers.
He split up transcendental p−adic numbers into three disjoint classes called p−adic S−, T−
and U−numbers. The class of p−adic U−numbers is subdivided into Um−subclasses (m =
1, 2, 3, . . .). Alnıaçık [1, Chapter III, Theorem I] established the first explicit illustrations
of p−adic Um−numbers for each positive integer m.

In 1978, Bundschuh [3] proposed a classification in K, similar to Mahler’s classification
in R and in Qp, which is called Mahler’s classification of formal power series over a finite
field. Bundschuh [3] separated transcendental formal power series into three disjoint classes
as follows.

Let ξ ∈ K be a transcendental formal power series. For positive rational integers n and
H, define

wn(H, ξ) = min {|P (ξ)| : P (y) ∈ K[x][y] \ {0}, deg(P ) ≤ n and H(P ) ≤ H} ,

wn(ξ) = lim sup
H→∞

− logwn(H, ξ)

logH
and w(ξ) = lim sup

n→∞

wn(ξ)

n
.

Bundschuh [3] proved that w(ξ) ≥ 1. Then ξ is called

• an S−number if 1 ≤ w(ξ) <∞,

• a T−number if w(ξ) = ∞ and wn(ξ) <∞ (n = 1, 2, 3, . . .),

• a U−number if w(ξ) = ∞ and wn(ξ) = ∞ from some n onward.

Furthermore, a U−number ξ is said to be a U1−number if w1(ξ) = ∞ and a Um−number
if wm(ξ) = ∞ and wn(ξ) <∞ for n = 1, . . . ,m− 1, where m > 1. Oryan [20] gave the first
explicit constructions of Um−numbers for each positive integer m. Recently, [12], [13], [14],
[4] and [5] established further explicit illustrations of Um−numbers in K. (See Bugeaud [2]
for a detailed information on Mahler’s classification in R, in Qp, in K and Lasjaunias [15]
for a survey of Diophantine approximation in fields of power series.)

2 Our main result

In 1979, Alnıaçık [1, Chapter III, Theorem I, pages 73-81] proved the existence of p−adic
Um−numbers for each positive integer m by showing that under certain conditions ra-
tional combinations with p−adic algebraic coefficients of a p−adic U1−number are p−adic
Um−numbers. Recently, Kekeç [14] established the following analogue of Alnıaçık [1, Chap-
ter III, Theorem I] in the field K when the combination is integral.

Theorem 1 (Kekeç [14], Theorem 1.1). Let α0, . . . , αk (k ≥ 1) be algebraic formal power
series with αk ̸= 0 and ξ be a U1−number enjoying a representation of the form

ξ =

∞∑
n=0

anx
−un ,
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where an ∈ K \ {0} (n = 0, 1, 2, . . .) and {un}∞n=0 is a strictly increasing sequence of non-
negative rational integers with

lim
n→∞

un+1

un
= ∞.

Then α0 + α1ξ + · · · + αkξ
k is a Um−number, where m is the degree of K(x)(α0, . . . , αk)

over K(x).

In the present paper, in Theorem 2, we extend Theorem 1 from integral combination
to rational combination. Therefore, in the field K of formal power series, we establish the
exact analogue of Alnıaçık [1, Chapter III, Theorem I] by using the recent result Can and
Kekeç [4, Theorem 1.2].

Theorem 2. Let α0, . . . , αk (k ≥ 1) and β0, . . . , βl (l ≥ 1) be algebraic formal power
series with αk ̸= 0 and βl = 1. Let m be the degree of K(x)(α0, . . . , αk, β0, . . . , βl) over
K(x). Moreover, suppose that the polynomials C(y) = α0 + α1y + · · · + αky

k and D(y) =
β0 + β1y + · · ·+ βly

l are relatively prime over

K(x)(α
{1}
0 , . . . , α

{m}
0 , . . . , α

{1}
k , . . . , α

{m}
k , β

{1}
0 , . . . , β

{m}
0 , . . . , β

{1}
l , . . . , β

{m}
l ),

where α
{1}
i , . . . , α

{m}
i and β

{1}
j , . . . , β

{m}
j denote the field conjugates of αi (i = 0, 1, . . . , k)

and βj (j = 0, 1, . . . , l) for K(x)(α0, . . . , αk, β0, . . . , βl), respectively. Assume that ξ is a
U1−number enjoying a representation of the form

ξ =

∞∑
h=0

ahx
−h,

where ah ∈ K (h = 0, 1, 2, . . .) satisfying ah = 0, rn < h < sn (n = 1, 2, 3, . . .),
ah ̸= 0, h = rn (n = 1, 2, 3, . . .),
ah ̸= 0, h = sn (n = 0, 1, 2, . . .),

where {sn}∞n=0 and {rn}∞n=1 are two infinite sequences of non-negative rational integers with

0 = s0 ≤ r1 < s1 ≤ r2 < s2 ≤ r3 < s3 ≤ r4 < s4 ≤ . . . ,

lim
n→∞

sn
rn

= ∞ and lim sup
n→∞

rn+1

sn
<∞.

Then

γ :=
C(ξ)

D(ξ)
=
α0 + α1ξ + · · ·+ αkξ

k

β0 + β1ξ + · · ·+ βlξl

is a Um−number.

In the next section, we prepare and cite some auxiliary results to prove Theorem 2.
We prove Theorem 2 in Section 4 and construct Um−numbers by applying Theorem 2 in
Section 5.
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3 Auxiliary results

The following lemma, Lemma 1, is the exact analogue of Alnıaçık [1, Chapter I, Lemma
5] in the power series setting and is an extension of Kekeç [14, Lemma 2.1] from integral
combination to rational combination. The proof of Lemma 1 is the same as that of Alnıaçık
[1, Chapter I, Lemma 5]. Therefore, we omit the proof of Lemma 1.

Lemma 1. Let α0, . . . , αk (k ≥ 1) and β0, . . . , βl (l ≥ 1) be algebraic formal power series
with αk ̸= 0 and βl = 1. Let m be the degree of K(x)(α0, . . . , αk, β0, . . . , βl) over K(x).
Moreover, suppose that the polynomials C(y) = α0 + α1y + · · · + αky

k and D(y) = β0 +
β1y + · · ·+ βly

l are relatively prime over

K(x)(α
{1}
0 , . . . , α

{m}
0 , . . . , α

{1}
k , . . . , α

{m}
k , β

{1}
0 , . . . , β

{m}
0 , . . . , β

{1}
l , . . . , β

{m}
l ).

Then for θ in K(x) the algebraic formal power series

C(θ)

D(θ)
=
α0 + α1θ + · · ·+ αkθ

k

β0 + β1θ + · · ·+ βlθl

is a primitive element of K(x)(α0, . . . , αk, β0, . . . , βl) over K(x) except for only finitely
many θ in K(x).

The following recent result Can and Kekeç [4, Theorem 1.2], which is a power series
analogue of the results İçen [11, page 25] and [10, Lemma 1, page 71], plays an important
role in the proof of Theorem 2.

Theorem 3 (Can and Kekeç [4], Theorem 1.2). Let L be a finite extension of degree m
over K(x) and α1, α2, . . . , αk be in L. Let η be any algebraic formal power series. Assume
that F (η, α1, . . . , αk) = 0, where F (y, y1, . . . , yk) is a polynomial in y, y1, . . . , yk over K[x]
with degree at least 1 in y. Then

H(η) ≤ HmH(α1)
l1m · · ·H(αk)

lkm,

where lj is the degree of F (y, y1, . . . , yk) in yj (j = 1, . . . , k) and H is the maximum of the
absolute values of the coefficients of F (y, y1, . . . , yk).

The following lemma is a well-known result the proof of which can be done easily by
following the lines of Waldschmidt [23, 3.5 Liouville’s Inequalities, page 82].

Lemma 2. Let α be an algebraic formal power series. Then

|α| ≤ H(α).

Lemma 3 (Oryan [20], Hilfssatz 2). Let P (y) and Q(y) be polynomials over K[x] with
degrees n ≥ 1 and m ≥ 2, respectively. If the polynomials P (y) and Q(y) are relatively
prime over K[x] and α is a root of Q(y), then

|P (α)| ≥ H(P )−m+1H(Q)−n.
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4 Proof of Theorem 2

We prove Theorem 2 by making use of the methods of the proofs of Alnıaçık [1, Chapter
III, Theorem I], Oryan [20, Satz 4, Satz 5] and Kekeç [14, Theorem 1.1]. We have

ξ = ξn + ρn (n = 1, 2, 3, . . .),

where

ξn =

rn∑
h=s0

ahx
−h and ρn =

∞∑
h=sn

ahx
−h (n = 1, 2, 3, . . .).

Therefore,

|ξ| = |ξn| = q−s0 = 1 (n = 1, 2, 3, . . .) (4.1)

and

|ρn| = q−sn < 1 (n = 1, 2, 3, . . .). (4.2)

Then

C(ξ) = C(ξn + ρn) = C(ξn) + ρnδn

and

D(ξ) = D(ξn + ρn) = D(ξn) + ρnδ̃n,

where

δn = α1 + α2(2ξn + ρn) + · · ·+ αk

((
k

1

)
ξk−1
n +

(
k

2

)
ξk−2
n ρn + · · ·+ ρk−1

n

)
and

δ̃n = β1 + β2(2ξn + ρn) + · · ·+ βl

((
l

1

)
ξl−1
n +

(
l

2

)
ξl−2
n ρn + · · ·+ ρl−1

n

)
for n = 1, 2, 3, . . .. As the equation D(y) = 0 may only have finitely many solutions in K(x),
the relation D(ξn) ̸= 0 holds for sufficiently large n. Thus we get for sufficiently large n

γ = γn + ρnσn,

where

γn =
C(ξn)

D(ξn)
and σn =

D(ξn)δn − C(ξn)δ̃n
D(ξn)D(ξ)

.

Let

|αi| =: q−ei (i = 0, 1, . . . , k), |βj | =: q−fj (j = 0, 1, . . . , l)

and

e := min {0, e0, e1, . . . , ek} , f := min {0, f0, f1, . . . , fl} , t := max {0, f0, f1, . . . , fl} .

Hence, using (4.1) and (4.2), we obtain for sufficiently large n

|δn| ≤ q−e, |δ̃n| ≤ q−f and |σn| ≤ q2t−e−f . (4.3)
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Observe that γn ∈ K(x)(α0, . . . , αk, β0, . . . , βl). By Lemma 1, deg(γn) = m holds for
sufficiently large n. We have

F (γn, α0, . . . , αk, β0, . . . , βl) = 0,

where

F (y, y0, . . . , yk+l+1) =
(
yyk+1 + ξnyyk+2 + · · ·+ ξlnyyk+l+1 − y0 − ξny1 − · · · − ξknyk

)
xrn max{k,l}

is a polynomial in K[x][y, y0, . . . , yk+l+1]. So it follows from Theorem 3 that

H(γn) ≤ qrn max{k,l}mH(α0)
m · · ·H(αk)

mH(β0)
m · · ·H(βl)

m ≤ qrn(max{k,l}m+1) (4.4)

is satisfied for sufficiently large n.
Let Pn(y) = cn0 + cn1y + · · ·+ cnmy

m be the minimal polynomial of γn over K[x]. For
Pn(γn) = 0, we get

Pn(γ) = Pn(γn + ρnσn) = ρnθn,

where

θn = cn1σn + · · ·+ cnm

((
m

1

)
γm−1
n σn +

(
m

2

)
γm−2
n ρnσ

2
n + · · ·+ ρm−1

n σmn

)
.

We infer from Lemma 2, (4.2), (4.3) and (4.4) that

|θn| ≤ H(γn)
m|σn|m ≤ drn1 ,

where d1 = qm
2 max{k,l}+m+2tm−em−fm, so from (4.2) that

|Pn(γ)| = |ρn||θn| ≤ q−sndrn1

and therefore from (4.4) and the fact H(Pn) = H(γn) that

0 < |Pn(γ)| ≤ H(Pn)
−λn

are verified for sufficiently large n, where

λn =
sn
rn

log q

log d1
− 1 and lim

n→∞
λn = ∞.

Since deg(Pn) = m holds, this implies that γ is a U−number with

wm(γ) = ∞. (4.5)

If m = 1, then w1(γ) = ∞ and so γ is a U1−number. Thus assume that m > 1. Let
B(y) = b0 + b1y + · · ·+ bgy

g be any polynomial over K[x] with deg(B) = g, 1 ≤ g ≤ m− 1
and with sufficiently large height H(B). For any sufficiently large positive rational integer
ν,

B(γ) = B(γν + ρνσν) = B(γν) + ρνφν , (4.6)

where

φν = b1σν + · · ·+ bg

((
g

1

)
γg−1
ν σν +

(
g

2

)
γg−2
ν ρνσ

2
ν + · · ·+ ρg−1

ν σgν

)
.
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Therefore, we get for sufficiently large ν

|φν | ≤ drν1 and |ρν ||φν | ≤ d−rνλν
1 .

There is a real constant d2 with 0 < d2 < 1 such that

λν ≥ d2
sν
rν

and so
|ρν ||φν | ≤ d−d2sν1 (4.7)

hold for sufficiently large ν. Since deg(γν) = m, we have B(γν) ̸= 0. Hence, by Lemma 3
and (4.4), we obtain for sufficiently large ν

|B(γν)| ≥ H(B)−(m−1)H(γν)
−(m−1) ≥ H(B)−(m−1)d

−rν(m−1)
1 . (4.8)

As lim supn→∞
rn+1

sn
<∞, there exists a real number µ > 1 such that

rn+1

sn
< µ (4.9)

for sufficiently large n. Let ϕ and ψ be two real numbers satisfying

ϕ >
2(m− 1)µ

d2
(4.10)

and

ψ >
(m− 1)(ϕ+ 1)

d2
. (4.11)

Further, the inequality

ψ <
sν
rν

(4.12)

holds for sufficiently large ν.
Let n be the unique positive rational integer verifying

drn1 ≤ H(B) < d
rn+1

1 .

If drn1 ≤ H(B) < d
rn+1/ϕ
1 holds, then we deduce from (4.6), (4.7), (4.8) and (4.9) for ν = n

that
B(γ) = B(γn) + ρnφn,

|B(γn)| ≥ H(B)−2(m−1),

|ρn||φn| < H(B)−(d2ϕ)/µ.

So, by (4.10), it follows that |ρn||φn| < |B(γn)|. Thus we obtain

|B(γ)| = |B(γn)| ≥ H(B)−2(m−1). (4.13)

If d
rn+1/ϕ
1 ≤ H(B) < d

rn+1

1 holds, then we infer from (4.6), (4.7), (4.8) and (4.12) for
ν = n+ 1 that

B(γ) = B(γn+1) + ρn+1φn+1,
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|B(γn+1)| ≥ H(B)−(m−1)(ϕ+1),

|ρn+1||φn+1| < H(B)−ψd2 .

Hence, by (4.11), it follows that |ρn+1||φn+1| < |B(γn+1)|. Therefore,

|B(γ)| = |B(γn+1)| ≥ H(B)−(m−1)(ϕ+1). (4.14)

We see from (4.13) and (4.14) that

|B(γ)| ≥ H(B)−(m−1)(ϕ+1)

holds for all polynomials B(y) over K[x] with 1 ≤ deg(B) ≤ m − 1 and with sufficiently
large height H(B). This gives us

wn(γ) <∞ (n = 1, . . . ,m− 1). (4.15)

Then, using (4.5) and (4.15), we conclude that

γ =
C(ξ)

D(ξ)
=
α0 + α1ξ + · · ·+ αkξ

k

β0 + β1ξ + · · ·+ βlξl

is a Um−number.

5 Applications of Theorem 2

Mahler [19, Theorem 2] observed that

α := x−1 + x−p + x−p
2

+ x−p
3

+ · · ·

is an algebraic formal power series of degree p, which is a root of the polynomial

P (y) = xyp − xy + 1 ∈ K[x][y].

We establish the following example for Theorem 2 by using Mahler’s algebraic formal power
series α.

Example 1. In Theorem 2, let us take k = 1, α0 = 1, α1 = α, l = 2, β0 = −x, β1 = 0,
β2 = 1 and the U1−number ξ as

ξ =

∞∑
h=0

ahx
−h

with {
ah = 0, rn < h < sn (n = 1, 2, 3, . . .),
ah = 1, sn ≤ h ≤ rn+1 (n = 0, 1, 2, . . .),

where

s0 = 0, sn = (n+ 3)n+2 and rn = 2 · (n+ 2)n+1 (n = 1, 2, 3, . . .).

Then all the hypotheses of Theorem 2 are satisfied, and so

γ =
αξ + 1

ξ2 − x

is a Up−number.
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As the classical theory of regular continued fractions in the field R of real numbers, there
exists an analogous theory of regular continued fractions in the field K of formal power series.
(For example, see [21], [6] and [4].) It is well-known that the regular continued fraction

β := [x, x, x, . . .] ∈ K

is an algebraic formal power series of degree 2, which is a root of the polynomial

P (y) = y2 − xy − 1 ∈ K[x][y].

We construct the following example for Theorem 2 by using the algebraic regular continued
fraction β.

Example 2. In Example 1, let us replace α by β. Then

γ =
βξ + 1

ξ2 − x

is a U2−number.

Christol [7] characterized algebraic formal power series over K in terms of automata.
He proved that a formal power series

∞∑
h=0

ahx
−h

over K is algebraic if and only if the sequence {ah}∞h=0 is q−automatic. (We refer the reader
to Eilenberg [8] for the information on automata and q−automatic sequences.) The result
of Christol [7] enables us to obtain the somewhat wider applicability of our result Theorem
2. In general, it is difficult to say anything sharp on the degree of the algebraic formal
power series arising from a concrete automaton, but nonetheless it gives us more examples
of Um−numbers even if we can not specify m precisely. For instance, let us take K = F2,
the finite field with two elements, and denote by F2((x

−1)) the field of formal power series
over F2. The so-called Thue-Morse-Hedlund sequence

{ah}∞h=0 = 01101001100 . . .

is 2−automatic. Then

θ :=

∞∑
h=0

ahx
−h ∈ F2((x

−1))

is an algebraic formal power series, which is in particular a root of the polynomial

P (y) = (x+ 1)3y2 + x(x+ 1)y + 1 ∈ F2[x][y].

(See Christol [7] and Firicel [9].) We finally give the following example for Theorem 2 by
using the algebraic formal power series θ of degree 2.

Example 3. In Example 1, let us replace α by θ. Then

γ =
θξ + 1

ξ2 − x

is a U2−number in F2((x
−1)).
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