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Abstract

We extend a previous result of Kekeg and prove that under certain conditions
rational combinations with algebraic formal power series coefficients of a U;-number
are Up-numbers in the field of formal power series over a finite field.
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1 Introduction

Let p be a prime number and K be a finite field of characteristic p and with ¢ elements.
Denote the ring of polynomials in = with coefficients in K by KJz|, the quotient field of
K[z] by K(z) and the degree of a non-zero polynomial a(z) in K[z] by deg(a). Then a
non-Archimedean absolute value | - | is set on K(x) by

0] =0 and ’a(@ deg(a)—deg(b)
b(x)

T

=4q

where a(z) and b(z) are non-zero polynomials in K[z]. The completion of K(x) with
respect to || is the field K of formal power series over K. The absolute value |-| is uniquely
extended from K (z) to K and is denoted by the same notation | -|. We uniquely represent
each non-zero element £ of K as
o0
=Y ana",
h=l
!

where aj, € K for h =1,1+1,... with a; # 0 and [ is the rational integer satisfying |{| = ¢~".

¢ € K is called an algebraic formal power series if it is algebraic over K(x) and a
transcendental formal power series if it is transcendental over K(z). Let P(y) = co +
a1y + -+ + ¢cpy™ be a non-zero polynomial in y with coefficients in K[z]. The degree of
P(y) with respect to y is denoted by deg(P) and the height H(P) of P(y) is defined as
H(P) = max {|co|,|c1],---,|cnl}- Let o € K be an algebraic formal power series and P(y)
be its minimal polynomial over K[z]. Then the degree deg(a) of a is defined as deg(P) and
the height H(«) of « is defined as H(P). (See Sprindzuk [22] for information on K.)

In 1932, Mahler [17] gave a classification of real numbers. He separated transcendental
real numbers into three disjoint classes called S—, T— and U—numbers. The class of
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U—numbers is subdivided into U,,—subclasses (m = 1,2,3,...). LeVeque [16] established
the first explicit illustrations of U,, —numbers for each positive integer m.

The completion of the field Q of rational numbers with respect to the p—adic absolute
value, where p is a prime number, is the field Q,, of p—adic numbers. In 1935, Mahler [18]
introduced a classification of p—adic numbers similar to his classification of real numbers.
He split up transcendental p—adic numbers into three disjoint classes called p—adic S—, T—
and U—numbers. The class of p—adic U—numbers is subdivided into U, —subclasses (m =
1,2,3,...). Almagk [1, Chapter III, Theorem I] established the first explicit illustrations
of p—adic U,,, —numbers for each positive integer m.

In 1978, Bundschuh [3] proposed a classification in K, similar to Mahler’s classification
in R and in Q,, which is called Mahler’s classification of formal power series over a finite
field. Bundschuh [3] separated transcendental formal power series into three disjoint classes
as follows.

Let £ € K be a transcendental formal power series. For positive rational integers n and
H, define

wn(H,§) = min{[P(¢)] : P(y) € Klz][y] \ {0}, deg(P) <n and H(P) < H},

Wn (5) = hm sup _IOL”(I{’&) and 'U_)(g) = hm sup wni(g)
H—o00 log H n—00 n

Bundschuh [3] proved that w(§) > 1. Then ¢ is called
e an S—number if 1 < w(€) < oo,
e a T—number if w(¢) = oo and w,(§) < o0 (n=1,2,3,...),
e a U—number if w(§) = oo and w,(§) = oo from some n onward.

Furthermore, a U—number ¢ is said to be a U;—number if w;(§) = oo and a U, —number
if w,, (&) = 00 and w,(§) < oo forn=1,...,m— 1, where m > 1. Oryan [20] gave the first
explicit constructions of U,, —numbers for each positive integer m. Recently, [12], [13], [14],
[4] and [5] established further explicit illustrations of U, —numbers in K. (See Bugeaud [2]
for a detailed information on Mahler’s classification in R, in Q,, in K and Lasjaunias [15]
for a survey of Diophantine approximation in fields of power series.)

2  Owur main result

In 1979, Almacik [1, Chapter III, Theorem I, pages 73-81] proved the existence of p—adic
U,,—numbers for each positive integer m by showing that under certain conditions ra-
tional combinations with p—adic algebraic coefficients of a p—adic U; —number are p—adic
U,,—numbers. Recently, Kekeg [14] established the following analogue of Almagik [1, Chap-
ter III, Theorem I] in the field K when the combination is integral.

Theorem 1 (Kekeg [14], Theorem 1.1). Let ayg,...,ax (k> 1) be algebraic formal power
series with ay # 0 and £ be a Uy —number enjoying a representation of the form

(o)
6 = Z a’nxiun7
n=0
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where a, € K\ {0} (n=0,1,2,...) and {u,}32, is a strictly increasing sequence of non-
negative rational integers with

lim Untl _

n—0o Uy,
Then ag + € + - - + ax€® is a U,,—number, where m is the degree of K(z)(a,...,az)
over K(x).

In the present paper, in Theorem 2, we extend Theorem 1 from integral combination
to rational combination. Therefore, in the field K of formal power series, we establish the
exact analogue of Almagik [1, Chapter III, Theorem I] by using the recent result Can and
Kekeg [4, Theorem 1.2].

Theorem 2. Let aq,...,ar (K > 1) and Bo,...,0 (I > 1) be algebraic formal power
series with ay; # 0 and B; = 1. Let m be the degree of K(z)(ao,...,ak, Bo,-..,B1) over
K(x). Moreover, suppose that the polynomials C(y) = ag + a1y + -+ + arpy® and D(y) =
Bo + Biy + - -+ + Byt are relatively prime over

1 m 1 m 1 m
K@)l o™ el alm g gtm

1 m
Lt 6 fmh,

goee sy Mg

where a{l}, ce o™ and 5]{1}, e ,ﬁj{m} denote the field conjugates of c; (i = 0,1,...,k)

% i
and B; (j = 0,1,...,1) for K(z)(o,-..,ax,Bo,-..,01), respectively. Assume that & is a
Uy —number enjoying a representation of the form

o0

—h

= apz ",
h=0

where ap, € K (h=0,1,2,...) satisfying

ap=0, r,<h<s, (n=12,3,...),
ap #0, h=r, (n=1,2,3,...),
ap #0, h=s, (n=0,1,2,...),

where {s, 152 and {r,}5, are two infinite sequences of non-negative rational integers with
0=50<1r1 <81 <1r3<89<r3<s3<ryg<s4<...,

. Sn . Tn41
lim — =00 and limsup
n—=00 T'p n—oo  Sn

< 00.

Then
C€)  ap+mé+ -+ aptk

TEDE) T Bot Bl + B!

is a U,,—number.

In the next section, we prepare and cite some auxiliary results to prove Theorem 2.
We prove Theorem 2 in Section 4 and construct U, —numbers by applying Theorem 2 in
Section 5.
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3 Auxiliary results

The following lemma, Lemma 1, is the exact analogue of Almacgik [1, Chapter I, Lemma
5] in the power series setting and is an extension of Keke¢ [14, Lemma 2.1] from integral
combination to rational combination. The proof of Lemma 1 is the same as that of Almacgik
[1, Chapter I, Lemma 5]. Therefore, we omit the proof of Lemma 1.

Lemma 1. Let ag,...,ar (k> 1) and Bo,..., 5 (I > 1) be algebraic formal power series
with ag, # 0 and B = 1. Let m be the degree of K(x)(ao,-.., ok, Bo,-..,01) over K(x).
Moreover, suppose that the polynomials C(y) = ag + a1y + - -+ + agy® and D(y) = By +
Biy + -+ + By are relatively prime over

K@) (o™, .. alm™ ol ol gt gy gt gl
Then for 0 in K(x) the algebraic formal power series

CO) ap+aif+-+ apb*

D(9)  Bo+ Bl + -+ Bl

is a primitive element of K(x)(ao,...,ak, Bo,...,01) over K(x) except for only finitely
many 0 in K(x).

The following recent result Can and Kekeg [4, Theorem 1.2], which is a power series
analogue of the results Igen [11, page 25] and [10, Lemma 1, page 71], plays an important
role in the proof of Theorem 2.

Theorem 3 (Can and Kekeg [4], Theorem 1.2). Let L be a finite extension of degree m
over K(x) and ay1,aq,...,ar be in L. Let n be any algebraic formal power series. Assume
that F(n,a1,...,a,) =0, where F(y,y1,...,Yk) is a polynomial in y,y1,...,yr over K|x]
with degree at least 1 in y. Then

H(n) < H™H(ap)"™ -+ H (o)™,

where l; is the degree of F(y,y1,...,yx) iny; (j=1,...,k) and H is the mazimum of the
absolute values of the coefficients of F(y,y1,.-.,Yk)-

The following lemma is a well-known result the proof of which can be done easily by
following the lines of Waldschmidt [23, 3.5 Liouville’s Inequalities, page 82].

Lemma 2. Let o be an algebraic formal power series. Then
la| < H(a).

Lemma 3 (Oryan [20], Hilfssatz 2). Let P(y) and Q(y) be polynomials over K[x] with
degrees n > 1 and m > 2, respectively. If the polynomials P(y) and Q(y) are relatively
prime over K|x] and « is a root of Q(y), then

|P(a)| > H(P)™™  H(Q)™".
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4 Proof of Theorem 2

We prove Theorem 2 by making use of the methods of the proofs of Almagik [1, Chapter
ITI, Theorem I}, Oryan [20, Satz 4, Satz 5] and Kekeg [14, Theorem 1.1]. We have

€:£ﬂ+p’ﬂ (n:172737"')7

where
gn = Z ahzih and Pn = Z ahxih (TL = 172a37 .. )
h=sg h=s,
Therefore,
€l =[&l=¢"=1 (n=123,..) (4.1)

and

lpnl =q 5" <1 (n=1,2,3,...). (4.2)
Then

C(§) = C(&n + pn) = C(&n) + pndn
and B

D(§) = D(€n + pn) = D(§n) + pndn,
where

kN k1 kN (k2 k—1
On = a1+ @2(280 4 pn) - | ()6 T o )&t

and

G = 0t 22 o) oo 1 ()64 (G) 62tk )

forn =1,2,3,.... Asthe equation D(y) = 0 may only have finitely many solutions in K(z),
the relation D(§,,) # 0 holds for sufficiently large n. Thus we get for sufficiently large n

Y = Yn + PnOn,
where B
"I DE) M D(&)D(€)
Let
loi| =2 ¢~ (i=0,1,...,k), 1Bil =:¢"F (j=0,1,...,0)
and

e:=min{0,eg,€1,...,€x}, f:=min {0, fo, f1,..., fi}, t := max {0, fo, f1,-.-, fi}-

Hence, using (4.1) and (4.2), we obtain for sufficiently large n

6, < g7, [6al<qf  and  o,| < g*e. (4.3)
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Observe that v, € K(z)(ag,...,ak, Bo,-..,0). By Lemma 1, deg(y,) = m holds for
sufficiently large n. We have

F(7n3a07'",akaﬁo,"'aﬁl) :Oa

where

F _ . l _ _ _ ... _ ¢k rn, max{k,l}
(Y, Y0, s Ukrir1) = (Y1 + Enta + - + ELyYntirr — Yo — &yt Eiy) @

is a polynomial in K[z|[y, Yo, - .-, Yk+i+1]- So it follows from Theorem 3 that

H(P)/n) < qrn max{k,l}mH(aO)m . H(Ozk)mH(ﬁo)m . H(Bl)m < qrn(max{k,l}m—i-l) (44)

is satisfied for sufficiently large n.
Let P(y) = cno + Cn1y + + -+ + Crumy™ be the minimal polynomial of v, over K[z]. For
P, (vn) =0, we get

where

On = ca10n + - + Cum ((T)'ﬁl“lan + (7;) Yoy pZ‘”ffZ”) :
We infer from Lemma 2, (4.2), (4.3) and (4.4) that
|0n] < H(yn)" on|™ < di”,
where dy = ¢m’ max{kl}+mt2tm—em—fm o, from (4.2) that
1P| = lpnllbn] < g~ di
and therefore from (4.4) and the fact H(P,) = H(v,) that
0< |Py(7)| < H(Py) ™

are verified for sufficiently large n, where

n L
— 5n 084 —1 and lim A, = co.
Ty log dy n—00

Since deg(P,,) = m holds, this implies that + is a U—number with
wm (y) = 0. (4.5)

If m = 1, then wy(y) = oo and so 7 is a Uy —number. Thus assume that m > 1. Let
B(y) =bo+biy+ -+ byy? be any polynomial over K[z] with deg(B) =g¢,1<g<m—1
and with sufficiently large height H(B). For any sufficiently large positive rational integer

v,

B(y) = B(v + pvov) = B(w) + puipw, (4.6)

where
pv =b1oy + -+ by ((i) v o + (g) 2 puol e pﬁ‘laﬁ) :
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Therefore, we get for sufficiently large v
lpu| < di* and  |py|[pn] < dl_”)w'
There is a real constant da with 0 < dy < 1 such that

S
)\u 2 d2l
Ty

and so
|oullpu| < dy 2> (4.7)

hold for sufficiently large v. Since deg(v,) = m, we have B(y,) # 0. Hence, by Lemma 3
and (4.4), we obtain for sufficiently large v

|B(v,)| > H(B)" "V H(v,)~"=1 > g(B)~(m-Vgmmh, (4.8)

Tnt1
Sn

As limsup,,_, < 00, there exists a real number ;> 1 such that

’é—“ <u (4.9)

for sufficiently large n. Let ¢ and 1 be two real numbers satisfying

2(m —1
da
and ) .
p> oD+ (411)
da
Further, the inequality
) < j—” (4.12)

holds for sufficiently large v.
Let n be the unique positive rational integer verifying

4" < H(B) < d}**".

If " < H(B) < d;**"/% holds, then we deduce from (4.6), (4.7), (4.8) and (4.9) for v =n
that

B(Y) = B(Yn) + pun,
|B(yn)| > H(B)™2(m=1),
|onllon] < H (B)~(429)/k.

So, by (4.10), it follows that |p,|/¢n| < [B(7,)|. Thus we obtain

|B(y)| = |B(ya)| = H(B)72" =Y. (4.13)

If d;”“w < H(B) < d{"*' holds, then we infer from (4.6), (4.7), (4.8) and (4.12) for
v =n+1 that
B('V) = B('Vn+1) + Pn+1Pn+1,
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|B(yns1)| > H(B)~ M=+,
‘pn+1||(,0n+1| < H(B)—wdQ_
Hence, by (4.11), it follows that |py1|[¢nt1| < [B(yn+1)]- Therefore,

IBO| = [B(ynsa)| > H(B)~ "D, (4.14)
We see from (4.13) and (4.14) that
|B()| = H(B)~ "D+

holds for all polynomials B(y) over K|x] with 1 < deg(B) < m — 1 and with sufficiently
large height H(B). This gives us

wp(y) <o (n=1,...,m—1). (4.15)
Then, using (4.5) and (4.15), we conclude that

C€)  ao+oé+ -+ apek
D(&)  Bo+ P&+ + B

’7:

is a U,, —number.

5 Applications of Theorem 2
Mabhler [19, Theorem 2] observed that
a=z  fr P4 4P 4o
is an algebraic formal power series of degree p, which is a root of the polynomial
Ply) = zy” —ay +1 € Kz][y].

We establish the following example for Theorem 2 by using Mahler’s algebraic formal power
series a.

Example 1. In Theorem 2, let us take k =1, ap =1, a1y =, 1 =2, o = —x, 1 =0,
B2 =1 and the Uy—number & as

o)
=3 mat
h=0
with
apb =0, r, <h<s, (n=1,2,3,...),
ap=1, s, <h<rpy1 (n=0,1,2,...),
where

s0=0, s,=m+3)""? and r,=2-(n+2)""" (n=1,2,3,...).
Then all the hypotheses of Theorem 2 are satisfied, and so

_af+1
7_62_27

is a Up—number.
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As the classical theory of regular continued fractions in the field R of real numbers, there
exists an analogous theory of regular continued fractions in the field K of formal power series.
(For example, see [21], [6] and [4].) It is well-known that the regular continued fraction

B :=[z,z,z,..] €K
is an algebraic formal power series of degree 2, which is a root of the polynomial
P(y) = y* —ay — 1 € K[z][y].

We construct the following example for Theorem 2 by using the algebraic regular continued
fraction f3.

Example 2. In Example 1, let us replace o by B. Then
_ pE+1

’7_52_1.

is a Us—number.

Christol [7] characterized algebraic formal power series over K in terms of automata.
He proved that a formal power series

oo
E ahx_h
h=0

over K is algebraic if and only if the sequence {as }7°, is g—automatic. (We refer the reader
to Eilenberg [8] for the information on automata and g—automatic sequences.) The result
of Christol [7] enables us to obtain the somewhat wider applicability of our result Theorem
2. In general, it is difficult to say anything sharp on the degree of the algebraic formal
power series arising from a concrete automaton, but nonetheless it gives us more examples
of U,,—numbers even if we can not specify m precisely. For instance, let us take K = Fs,
the finite field with two elements, and denote by Fy((2~1)) the field of formal power series
over [Fo. The so-called Thue-Morse-Hedlund sequence

{an}3, = 01101001100 ..

is 2—automatic. Then
0= Zahxfh cFa((zh))
h=0
is an algebraic formal power series, which is in particular a root of the polynomial
P(y) = (z+ 1)%y* + z(z + 1)y + 1 € Fo[z][y].
(See Christol [7] and Firicel [9].) We finally give the following example for Theorem 2 by
using the algebraic formal power series 6 of degree 2.
Example 3. In Example 1, let us replace o by 6. Then
0 +1
,y - 52 —

is a Uy—number in Fo((x71)).
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