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Abstract

In this paper, we present several new g-congruences on the g-trinomial coefficients
introduced by Andrews and Baxter. As a conclusion, we obtain the following congru-

CEDOOA))

where a, b, ¢, d are integers subject to a > 0,0 < b,d < p — 1, and p is an odd prime.
Besides, we find that the method can also be used to reprove Pan’s Lucas-type
congruence for the g-Delannoy numbers.
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1 Introduction

In 1992, Sagan [12] gave the following g-congruence: for a,b,c,d € N with 0 < b,d <n —1,

o sa] = (D)]a] o oton -

which is a g-analogue of the well-known Lucas congruence: for any prime p,

(27 =) (5) amodn.

where a,b,c,d € N with 0 < b,d < p— 1. Here and throughout the paper, ®,,(¢) stands for
the n-th cyclotomic polynomial in q:

(I)n(q) = H (q_Ck)>
1<k<n
ged(n,k)=1
where ¢ is an n-th primitive root of unity. The g-binomial coefficient is defined as

0, otherwise,

if0<k<mn;
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where the g-shifted factorial is defined as (a;¢)o = 1 and (a;¢)n, = (1 —a)(1 —agq)--- (1 —
aq" 1) with n € Z+.

On the other hand, for n € N and integer j, the trinomial coefficient is the coefficient of
27 in the expansion of (1 + x + x~1)". Namely,

((?)) = @)1+ z+a2"h)",
and therefore the relation holds:
)=

The trinomial coefficient has several simple expressions (see[1]), such as

C)-20)6) »
()-SR 2) "

Six different g-analogues of the trinomial coefficients, which play significant roles in hard
hexagon model, were introduced by Andrews and Baxter [2]. We list all of them here:

<<’;>>§B)—iqkw> Kl

= gk [ 2n — 2k
i =t O

and

k=0 )
o) = 31 [[;2’;]
s =3 ot ] [
oo 5%

~ 2 2n — 2k
kk—k

k=

We point out that (( )) ® with the B = j case has many beautiful and interesting congruence
i’ q

properties, which can be found in [3, 7].

During the past few years, some experts have paid attention to g-supercongruences. We
refer the reader to [4, 5, 6, 9, 13, 15, 16] for some of their work. Moreover, some congruences
for g-binomial coefficients and g-trinomial coefficients can be found in [3, 7, 8, 10, 14, 17].

Motivated by the work just mentioned, we shall establish six Lucas-like congruences for
g-trinomial coefficients.
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Theorem 1. Suppose that n > 2 and c are integers, a,b,d € N with 0 < b,d < n — 1.
There holds

(0 1 I O 1 ) SN

Theorem 2. Suppose that n > 2 and c are integers, a,b,d € N with 0 < b,d < n — 1.
There holds, modulo ®,(q),

Flan+b,cn+d,q) = (<Z>)F(b d,q) + <(C i 1))F(b, d—n,q),

where F € {79, Ty, T1,t0,t1} represents the other five q-analogues of the trinomial coeffi-
cients.

Obviously, taking ¢ — 1 in the above two theorems, we obtain the following congruence
for trinomial coefficient.

Corollary 1. Suppose that a,b,c,d are integers subject to a > 0,0 < b,d <p—1, and p is
an odd prime. There holds

()= CIE) (D E,) e

Recently, Pan[11] gave a Lucas-type congruence for the g-Delannoy numbers by using
a combinatorial interpretation. As serendipitous discoveries, we reprove Pan’s curious ¢-
congruence through a different method.

Theorem 3 (Pan[11]). Suppose that n > 2, a,b,c,d € N and 0 < b,d <n —1. If n is odd,
then

Dy(an+b,en +d) = D(a,c)Dy(b,d) (mod ®,(q)).
If n is even, then
Dy(an+b,en +d) = Dy(b,d) (mod @,(q)).
Here Dy(n,j) and D(n, j) are defined as follows:

sinn- S 757

k=0

nen-£(( )

k=0

n

It can be easily seen that Dy(n, j) is a g-analogue of D(n, j).

The rest of the paper is arranged as follows. In the next section, we shall give a proof
of Theorem 1. The proof of Theorem 2 will be presented in Section 3. In the last section,
Theorem 3 will be proven.
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2 Proof of Theorem 1

Firstly, we consider the ¢ > 0 case. If ¢ > a, (1.4) holds obviously. Otherwise, expressing the

left-hand side of (1.4) by Andrews and Baxter’s expression and noting that [‘””rb*k] =0

cn+d+k
L an—cn-&-b—dj
2

for any k > , we get

an + b\\?) aib k(ktB) |an + 0| lan+b—k
cn+d q k k+en+d
Lan cn+b— dJ

_ k(k+B) [+ D lan+b—Fk 91
I;J ¢ [ k k+en+d 2.1)

= El +227

where

%=
+ bl [an+b—Ekn
P kn(kn+B) an
! Z 9 kn kn+cn+d|’

[“7=] jndn—1

Z Z k(k+B) an+b an+b7k
k+cn+d|

7=0 k=jn+1

Since 1 < b,d < n — 1, congruence (1.1) takes effect here. Applying congruence (1.1) to
each of the g-binomial coefficients in the summand of ¥; and keeping in mind that ¢" =
(mod ®,,(q)), we obtain that

7=

== 2 (LGl = ()] wno e

where we have utilized the expression of trinomial coefficient (1.2) in the last relation.
With the help of congruence (1.1) again, there holds

Zanlqurjn k+Jn+B)[an+b] [anerkjn]
= o in+k|llk+jn+cn+d

DI SR AT ot

Z (G
DO () wnio e
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By substituting the results (2.2) and (2.3) into the right-hand side of (2.1), we get the
desired result: for n > 2 and c are non-negative integers, a,b,d € N with 0 < b,d <n — 1,
there holds

(0 1 I O 1 ) DN

Now suppose that ¢ < 0,1 < d < n — 1. Then utilizing (2.4) and the following easily-

proved relation,
(B) (B+25)
(), - @), e
—1//q 1774

B—2cn—2d
<< an +b >> ( )q(anrd)(anrde)
—en—n+n—d p

()
N[O

(( )) ((Z)) B enbienta-Byrap-2en—a)
)
O (D). v

And it can be easily seen that this relation holds for d = 0 as well. Hence we finish the
whole proof.

we obtain

an+b (B)
en+d p

3 Proof of Theorem 2

The proof of Theorem 2 is more complicated than that of Theorem 1, since different ranges
of b,d, k mean different congruence results. Therefore, we have to deal with the binomial
coefficients in the summand case by case.

Let’s start with the F' = 73 case. We first split the summation of the following g-
trinomial coefficients into two parts as

an—cn—+b—d

—(* +b 2an + 2b — 2k
boen +d.q) = _)fglemh=(5) [4n
mo(an +b,en +d, q) ];) (—1)"q 2 k an—entb—d—k

=4 + 2o, (31)
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where
— _(kn +b 2an + 2b — 2kn
Y, = 1 kn (an+b)kn (kz) an
! ’;)( )™ kn an—cn+b—d—knl|’

a—cn—1 .
i j jn b 2 2b— 2k — 2
5= S5 oo [ 0] 222k |

=0 k=1 k+jn||lan—cn+b—d—k —jn

Now we shall discuss the different cases of b and d one by one. The first case is b < d
and b < (n —1)/2. In this case, we have, modulo ®,(q),

5= 0 () 2T ) i) a2

k=0

o 03 R [ | ol

j=0 k=1
where we have utilized congruence (1.1) repeatedly with 0 < 2b, b—d+n, 2b—2k, b—d—k+n <
n— 1.

Combining (3.1), (3.2) with (3.3) together, and noticing the trinomial coefficient’s ex-
pression (1.3), we are led to

nlantboen+da)= (5 Nrbd—na (mod o),

The second case is b < d and b > (n + 1)/2. Then, modulo ®,(q),

— 20 — 2k + 1 20— n
Y1 = —1)* “
! kz;)( ) (k)(a—c—k—l){b—d—i—n]’

B S e Y e el
o> <—1>k+jqbk-@><z><a2@“?‘J{ﬂ e

j=0k=b—(n—1)/2

Noticing that [35;3’21’;] = [bfé’:iin] =0 (mod ®,(¢)) for k <b— (n+1)/2, we obtain

S1 4 = ((Ci 1)) ro(b,d—n,q) (mod ®,(q)).
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The third case is b > d and b < (n — 1)/2. Through the same path, we get

;) (ffikk) L2 medeaa)
fz () ()
3 bz pieg® () (272 L T mea e

Observing that [b_zfi’:ilj_n] is always equal to 0 for b —d+ 1 < k <n — 1, we have

I [l
Mo OM‘

g Lv

To(an +b,en+d, q) = ((Z)) 7o(b,d,q) (mod ®,(q)).

The next case is b > d, b > (n+ 1)/2 and d < (n — 1)/2. In such condition, we have:
modulo ®,,(q),

ey k(@) (2a=2k+1\[2b—n
El_kzo( 2 (k)(ack b—d |’

5, = Z (—1)k+igtk—(5) (J) <2<l -2j+ 1)

a—C—

—

b] [2b— 2k —n
— K|l b—d—k
b—d

|
+. > o= 1)+ gk =(5) (j) (ji;i) m [bzf;ikk]

k=b—(n—1)/2
. < ye+ig (k)(@)( 2a — 2j )[b” 2% — 2k ]
= kbd+1 jJ\a—c—j3—1)|k]|lb—d—Fk+n

The third summation of X5 could be cancelled since [bfé’:iin] =0fork>b+d—n,and
b+d—n<b-—d+1 always holds in this case.

Due to the relation

20 —27+1 2a — 27 2a — 2j
(a J ):( ¢ ‘7,)+( e ) (3.4)
a—c—]j a—c—]J a—c—j5—1

and the fact that, for 0 <k <b— (n+1)/2,

[22 _ fzk—_kn] - Lff a i] - L, _22 _ Zli ,J (mod ®,(q)), (3.5)
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we can simplify Y1 + ¥ as follows:

b—(n+1)/2

a ®[b][20—2k —n

mam= () e O[T

c = kl| b—d—k
b—(n+1)/2

) E oo
+ Z o(b,d, q) — Z b_(gf)/z(—l)kqbk(g)z ﬁ;ikk
k=0
= ( Z)) o(b,d, q) + ((Ci 1)) ro(b,d—n,q) (mod &, (q)).

The last case is b > d, b > (n+1)/2 and d > (n + 1)/2. In this case, modulo ®,(q),

Ny k(@) (20— 2k+1\[2b—n
m=) (1) (k)(ack b—d |’
k=0
Zbi Yo - )(a>(2a—2j+1>[b}Fb—Qk—n]
et J a—c—j kl| b—d—k
a—c b— (’I’L+1)/2

DM 6] )| i ]

jOkderl

DI <—1>’“*f‘q““‘®(§)(af’ii?il) H] e

3=0 k=b—(n—1)/2

Using relation (3.4) and (3.5) again and following the similar path in the fourth case, we
are access to the conclusion

ro(an +b,en +d, q) = ((i)) o(b,d, q) + ((ci 1)) o(b,d —n,q) (mod @y (q)).

All of these five cases satisfy the congruence in Theorem 2 as desired.

The result in ¢ < 0 case can be deduced easily due to the relation 7 (n, j, ¢) = 70(n, —7, q),
then the proof is just like what we have done in the proof of Theorem 1.

Taking ¢ — ¢* in (1.1), we get

ot = O], emoaman

ot =), e eatan (36)

since ®,,(q) divides ®,,(¢?).

Utilizing (3.6) instead of (1.1) if it is necessary, we find that the processes of proving
the congruence about F' € {Ty,T1,to,t1} are totally the same as that of proving the F' = 7
case, and therefore we omit their proofs here.

Then there holds
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4 Proof of Theorem 3

We split the summation of the following Delannoy number into two parts as usual. Firstly,
we consider the situation where n is an odd integer.

an+b

1y [en+dl [an+en+b+d—k
l%wn+bmn+®::ggﬂ2){ f }{ ot d }221+2m
where

a cn +d an+cn+b+d_kn
Z - (k2+1) cn
' kz_:q kn en+d ’

GS ktiptL) en+d][an+cen+b+d— k—]n

= k:lq k+jn en+d

This time, we need to deal with two different cases. The first case is b+d <n — 1. In
this case, modulo ®,,(q),

mes (]

w0

Then immediately we get the result
Y1 4+ X2 = D(a,c)Dy(b,d) (mod ®,(q)).
The other case is b+ d > n. Then, modulo ®,(q),

Elzg(;>(a+cck+l>{b+jn}
- a :z:” k+1<>(a+66]+1)[2:||:b+ddkn]

7=0 1
n—1
(€ a+c—7\[d]|[b+d— k
+Z >, j c Kl d
=0 k=b+d—n+1
It is not difficult to verify that for 0 <k <b+d—n

{b—&-d—k—n} _ [b—i—d—k

p p } =0 (mod ®,(q)).

As a result,

mem =3 S () ([

=0 k=0

<.

= D(a,c)Dy(b,d) (mod @,(q)).
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Now we consider the other situation where n is an even integer. Noticing that ¢"/? = —1
(mod ®,(q)), we have, modulo ®,(q),

T = (C0F a7 = (1)
Therefore,
s SR P

In order to finish proving Theorem 3, it only remains to show

Sew(()( ) -

In fact,

2 () maen] S0 e

=0

where we have utilized the Chu-Vandermonde formula

Now the proof is completed.
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