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Abstract

In this paper, we present several new q-congruences on the q-trinomial coefficients
introduced by Andrews and Baxter. As a conclusion, we obtain the following congru-
ence: ((

ap+ b

cp+ d

))
≡

((
a

c

))((
b

d

))
+

((
a

c+ 1

))((
b

d− p

))
(mod p),

where a, b, c, d are integers subject to a ≥ 0, 0 ≤ b, d ≤ p− 1, and p is an odd prime.
Besides, we find that the method can also be used to reprove Pan’s Lucas-type

congruence for the q-Delannoy numbers.
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1 Introduction

In 1992, Sagan [12] gave the following q-congruence: for a, b, c, d ∈ N with 0 ≤ b, d ≤ n− 1,[
an+ b

cn+ d

]
≡

(
a

c

)[
b

d

]
(mod Φn(q)), (1.1)

which is a q-analogue of the well-known Lucas congruence: for any prime p,(
ap+ b

cp+ d

)
≡

(
a

c

)(
b

d

)
(mod p),

where a, b, c, d ∈ N with 0 ≤ b, d ≤ p− 1. Here and throughout the paper, Φn(q) stands for
the n-th cyclotomic polynomial in q:

Φn(q) =
∏

1⩽k⩽n
gcd(n,k)=1

(q − ζk),

where ζ is an n-th primitive root of unity. The q-binomial coefficient is defined as

[
n

k

]
=

[
n

k

]
q

=


(q; q)n

(q; q)k(q; q)n−k
, if 0 ≤ k ≤ n;

0, otherwise,
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where the q-shifted factorial is defined as (a; q)0 = 1 and (a; q)n = (1 − a)(1 − aq) · · · (1 −
aqn−1) with n ∈ Z+.

On the other hand, for n ∈ N and integer j, the trinomial coefficient is the coefficient of
xj in the expansion of (1 + x+ x−1)n. Namely,((

n

j

))
= [xj ](1 + x+ x−1)n,

and therefore the relation holds: ((
n

j

))
=

((
n

−j

))
.

The trinomial coefficient has several simple expressions (see[1]), such as((
n

j

))
=

n∑
k=0

(
n

k

)(
n− k

k + j

)
, (1.2)

and ((
n

j

))
=

n∑
k=0

(−1)k
(
n

k

)(
2n− 2k

n− j − k

)
. (1.3)

Six different q-analogues of the trinomial coefficients, which play significant roles in hard
hexagon model, were introduced by Andrews and Baxter [2]. We list all of them here:((

n

j

))(B)

q

=

n∑
k=0

qk(k+B)

[
n

k

][
n− k

k + j

]
,

τ0(n, j, q) =

n∑
k=0

(−1)kqnk−(
k
2)
[
n

k

][
2n− 2k

n− j − k

]
,

T0(n, j, q) =

n∑
k=0

(−1)k
[
n

k

]
q2

[
2n− 2k

n− j − k

]
,

T1(n, j, q) =

n∑
k=0

(−q)k
[
n

k

]
q2

[
2n− 2k

n− j − k

]
,

t0(n, j, q) =

n∑
k=0

(−1)kqk
2

[
n

k

]
q2

[
2n− 2k

n− j − k

]
,

t1(n, j, q) =

n∑
k=0

(−1)kqk
2−k

[
n

k

]
q2

[
2n− 2k

n− j − k

]
.

We point out that
((n

j

))(B)

q
with the B = j case has many beautiful and interesting congruence

properties, which can be found in [3, 7].
During the past few years, some experts have paid attention to q-supercongruences. We

refer the reader to [4, 5, 6, 9, 13, 15, 16] for some of their work. Moreover, some congruences
for q-binomial coefficients and q-trinomial coefficients can be found in [3, 7, 8, 10, 14, 17].

Motivated by the work just mentioned, we shall establish six Lucas-like congruences for
q-trinomial coefficients.
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Theorem 1. Suppose that n ≥ 2 and c are integers, a, b, d ∈ N with 0 ≤ b, d ≤ n − 1.
There holds((

an+ b

cn+ d

))(B)

q

≡
((

a

c

))((
b

d

))(B)

q

+

((
a

c+ 1

))((
b

d− n

))(B)

q

(mod Φn(q)). (1.4)

Theorem 2. Suppose that n ≥ 2 and c are integers, a, b, d ∈ N with 0 ≤ b, d ≤ n − 1.
There holds, modulo Φn(q),

F (an+ b, cn+ d, q) ≡
((

a

c

))
F (b, d, q) +

((
a

c+ 1

))
F (b, d− n, q),

where F ∈ {τ0, T0, T1, t0, t1} represents the other five q-analogues of the trinomial coeffi-
cients.

Obviously, taking q → 1 in the above two theorems, we obtain the following congruence
for trinomial coefficient.

Corollary 1. Suppose that a, b, c, d are integers subject to a ≥ 0, 0 ≤ b, d ≤ p− 1, and p is
an odd prime. There holds((

ap+ b

cp+ d

))
≡

((
a

c

))((
b

d

))
+

((
a

c+ 1

))((
b

d− p

))
(mod p).

Recently, Pan[11] gave a Lucas-type congruence for the q-Delannoy numbers by using
a combinatorial interpretation. As serendipitous discoveries, we reprove Pan’s curious q-
congruence through a different method.

Theorem 3 (Pan[11]). Suppose that n ≥ 2, a, b, c, d ∈ N and 0 ≤ b, d ≤ n− 1. If n is odd,
then

Dq(an+ b, cn+ d) ≡ D(a, c)Dq(b, d) (mod Φn(q)).

If n is even, then

Dq(an+ b, cn+ d) ≡ Dq(b, d) (mod Φn(q)).

Here Dq(n, j) and D(n, j) are defined as follows:

Dq(n, j) =

n∑
k=0

q(
k+1
2 )

[
j

k

][
n+ j − k

j

]
,

D(n, j) =

n∑
k=0

(
j

k

)(
n+ j − k

j

)
.

It can be easily seen that Dq(n, j) is a q-analogue of D(n, j).
The rest of the paper is arranged as follows. In the next section, we shall give a proof

of Theorem 1. The proof of Theorem 2 will be presented in Section 3. In the last section,
Theorem 3 will be proven.
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2 Proof of Theorem 1

Firstly, we consider the c ≥ 0 case. If c > a, (1.4) holds obviously. Otherwise, expressing the
left-hand side of (1.4) by Andrews and Baxter’s expression and noting that

[
an+b−k
cn+d+k

]
= 0

for any k > ⌊an−cn+b−d
2 ⌋, we get

((
an+ b

cn+ d

))(B)

q

=

an+b∑
k=0

qk(k+B)

[
an+ b

k

][
an+ b− k

k + cn+ d

]

=

⌊ an−cn+b−d
2 ⌋∑

k=0

qk(k+B)

[
an+ b

k

][
an+ b− k

k + cn+ d

]
(2.1)

= Σ1 +Σ2,

where

Σ1 =

⌊ a−c
2 ⌋∑

k=0

qkn(kn+B)

[
an+ b

kn

][
an+ b− kn

kn+ cn+ d

]
,

Σ2 =

⌊ a−c
2 ⌋∑

j=0

jn+n−1∑
k=jn+1

qk(k+B)

[
an+ b

k

][
an+ b− k

k + cn+ d

]
.

Since 1 ≤ b, d ≤ n − 1, congruence (1.1) takes effect here. Applying congruence (1.1) to
each of the q-binomial coefficients in the summand of Σ1 and keeping in mind that qn ≡ 1
(mod Φn(q)), we obtain that

Σ1 ≡
⌊ a−c

2 ⌋∑
k=0

(
a

k

)[
b

0

](
a− k

k + c

)[
b

d

]
≡

((
a

c

))[
b

d

]
(mod Φn(q)), (2.2)

where we have utilized the expression of trinomial coefficient (1.2) in the last relation.
With the help of congruence (1.1) again, there holds

Σ2 =

⌊ a−c
2 ⌋∑

j=0

n−1∑
k=1

q(k+jn)(k+jn+B)

[
an+ b

jn+ k

][
an+ b− k − jn

k + jn+ cn+ d

]

≡
⌊ a−c

2 ⌋∑
j=0

n−1−d∑
k=1

qk(k+B)

(
a

j

)[
b

k

](
a− j

j + c

)[
b− k

k + d

]

+

⌊ a−c
2 ⌋∑

j=0

n−1∑
k=n−d

qk(k+B)

(
a

j

)[
b

k

](
a− j

j + c+ 1

)[
b− k

k + d− n

]

≡
((

a

c

))((
b

d

))(B)

q

−
((

a

c

))[
b

d

]
+

((
a

c+ 1

))((
b

d− n

))(B)

q

(mod Φn(q)). (2.3)
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By substituting the results (2.2) and (2.3) into the right-hand side of (2.1), we get the
desired result: for n ≥ 2 and c are non-negative integers, a, b, d ∈ N with 0 ≤ b, d ≤ n− 1,
there holds((

an+ b

cn+ d

))(B)

q

≡
((

a

c

))((
b

d

))(B)

q

+

((
a

c+ 1

))((
b

d− n

))(B)

q

(mod Φn(q)). (2.4)

Now suppose that c < 0, 1 ≤ d ≤ n − 1. Then utilizing (2.4) and the following easily-
proved relation, ((

n

−j

))(B)

q

=

((
n

j

))(B+2j)

q

qj(j+B),

we obtain((
an+ b

cn+ d

))(B)

q

≡
((

an+ b

−cn− n+ n− d

))(B−2cn−2d)

q

q(cn+d)(cn+d−B)

≡
((

a

−c− 1

))((
b

n− d

))(B−2cn−2d)

q

q(cn+d)(cn+d−B)

+

((
a

−c

))((
b

−d

))(B−2cn−2d)

q

q(cn+d)(cn+d−B)

≡
((

a

c

))((
b

d

))(B−2cn)

q

q(cn+d)(cn+d−B)+d(B−2cn−d)

+

((
a

c+ 1

))((
b

d− n

))(B−2cn−2n)

q

q(cn+d)(cn+d−B)+(d−n)(B−n−2cn−d)

≡
((

a

c

))((
b

d

))(B)

q

+

((
a

c+ 1

))((
b

d− n

))(B)

q

(mod Φn(q)).

And it can be easily seen that this relation holds for d = 0 as well. Hence we finish the
whole proof.

3 Proof of Theorem 2

The proof of Theorem 2 is more complicated than that of Theorem 1, since different ranges
of b, d, k mean different congruence results. Therefore, we have to deal with the binomial
coefficients in the summand case by case.

Let’s start with the F = τ0 case. We first split the summation of the following q-
trinomial coefficients into two parts as

τ0(an+ b, cn+ d, q) =

an−cn+b−d∑
k=0

(−1)kq(an+b)k−(k2)
[
an+ b

k

][
2an+ 2b− 2k

an− cn+ b− d− k

]
= Σ1 +Σ2, (3.1)
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where

Σ1 =

a−c∑
k=0

(−1)knq(an+b)kn−(kn
2 )

[
an+ b

kn

][
2an+ 2b− 2kn

an− cn+ b− d− kn

]
,

Σ2 =

a−c∑
j=0

n−1∑
k=1

(−1)k+jnq(an+b)(k+jn)−(k+jn
2 )

[
an+ b

k + jn

][
2an+ 2b− 2k − 2jn

an− cn+ b− d− k − jn

]
.

Now we shall discuss the different cases of b and d one by one. The first case is b < d
and b ≤ (n− 1)/2. In this case, we have, modulo Φn(q),

Σ1 ≡
a−c∑
k=0

(−1)k
(
a

k

)(
2a− 2k

a− c− k − 1

)[
2b

b− d+ n

]
, (3.2)

Σ2 ≡
a−c∑
j=0

n−1∑
k=1

(−1)k+jqbk−(
k
2)
(
a

j

)(
2a− 2j

a− c− j − 1

)[
b

k

][
2b− 2k

b− d− k + n

]
, (3.3)

where we have utilized congruence (1.1) repeatedly with 0 ≤ 2b, b−d+n, 2b−2k, b−d−k+n ≤
n− 1.

Combining (3.1), (3.2) with (3.3) together, and noticing the trinomial coefficient’s ex-
pression (1.3), we are led to

τ0(an+ b, cn+ d, q) ≡
((

a

c+ 1

))
τ0(b, d− n, q) (mod Φn(q)).

The second case is b < d and b ≥ (n+ 1)/2. Then, modulo Φn(q),

Σ1 ≡
a−c∑
k=0

(−1)k
(
a

k

)(
2a− 2k + 1

a− c− k − 1

)[
2b− n

b− d+ n

]
,

Σ2 ≡
a−c∑
j=0

b−(n+1)/2∑
k=1

(−1)k+jqbk−(
k
2)
(
a

j

)(
2a− 2j + 1

a− c− j − 1

)[
b

k

][
2b− 2k − n

b− d− k + n

]

+

a−c∑
j=0

n−1∑
k=b−(n−1)/2

(−1)k+jqbk−(
k
2)
(
a

j

)(
2a− 2j

a− c− j − 1

)[
b

k

][
2b− 2k

b− d− k + n

]
.

Noticing that
[
2b−2k−n
b−d−k+n

]
≡

[
2b−2k

b−d−k+n

]
≡ 0 (mod Φn(q)) for k ≤ b− (n+ 1)/2, we obtain

Σ1 +Σ2 ≡
((

a

c+ 1

))
τ0(b, d− n, q) (mod Φn(q)).
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The third case is b ≥ d and b ≤ (n− 1)/2. Through the same path, we get

Σ1 ≡
a−c∑
k=0

(−1)k
(
a

k

)(
2a− 2k

a− c− k

)[
2b

b− d

]
(mod Φn(q)),

Σ2 ≡
a−c∑
j=0

b−d∑
k=1

(−1)k+jqbk−(
k
2)
(
a

j

)(
2a− 2j

a− c− j

)[
b

k

][
2b− 2k

b− d− k

]

+

a−c∑
j=0

n−1∑
k=b−d+1

(−1)k+jqbk−(
k
2)
(
a

j

)(
2a− 2j

a− c− j − 1

)[
b

k

][
2b− 2k

b− d− k + n

]
(mod Φn(q)).

Observing that
[

2b−2k
b−d−k+n

]
is always equal to 0 for b− d+ 1 ≤ k ≤ n− 1, we have

τ0(an+ b, cn+ d, q) ≡
((

a

c

))
τ0(b, d, q) (mod Φn(q)).

The next case is b ≥ d, b ≥ (n + 1)/2 and d ≤ (n − 1)/2. In such condition, we have:
modulo Φn(q),

Σ1 ≡
a−c∑
k=0

(−1)k
(
a

k

)(
2a− 2k + 1

a− c− k

)[
2b− n

b− d

]
,

Σ2 ≡
a−c∑
j=0

b−(n+1)/2∑
k=1

(−1)k+jqbk−(
k
2)
(
a

j

)(
2a− 2j + 1

a− c− j

)[
b

k

][
2b− 2k − n

b− d− k

]

+

a−c∑
j=0

b−d∑
k=b−(n−1)/2

(−1)k+jqbk−(
k
2)
(
a

j

)(
2a− 2j

a− c− j

)[
b

k

][
2b− 2k

b− d− k

]

+

a−c∑
j=0

n−1∑
k=b−d+1

(−1)k+jqbk−(
k
2)
(
a

j

)(
2a− 2j

a− c− j − 1

)[
b

k

][
2b− 2k

b− d− k + n

]
.

The third summation of Σ2 could be cancelled since
[

2b−2k
b−d−k+n

]
= 0 for k > b+ d− n, and

b+ d− n ≤ b− d+ 1 always holds in this case.

Due to the relation(
2a− 2j + 1

a− c− j

)
=

(
2a− 2j

a− c− j

)
+

(
2a− 2j

a− c− j − 1

)
, (3.4)

and the fact that, for 0 ≤ k ≤ b− (n+ 1)/2,

[
2b− 2k − n

b− d− k

]
≡

[
2b− 2k

b− d− k

]
≡

[
2b− 2k

b− d− k + n

]
(mod Φn(q)), (3.5)
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we can simplify Σ1 +Σ2 as follows:

Σ1 +Σ2 ≡
((

a

c

)) b−(n+1)/2∑
k=0

(−1)kqbk−(
k
2)
[
b

k

][
2b− 2k − n

b− d− k

]

+

((
a

c+ 1

)) b−(n+1)/2∑
k=0

(−1)kqbk−(
k
2)
[
b

k

][
2b− 2k − n

b− d− k

]

+

((
a

c

))
τ0(b, d, q)−

((
a

c

)) b−(n+1)/2∑
k=0

(−1)kqbk−(
k
2)
[
b

k

][
2b− 2k

b− d− k

]
≡

((
a

c

))
τ0(b, d, q) +

((
a

c+ 1

))
τ0(b, d− n, q) (mod Φn(q)).

The last case is b ≥ d, b ≥ (n+ 1)/2 and d ≥ (n+ 1)/2. In this case, modulo Φn(q),

Σ1 ≡
a−c∑
k=0

(−1)k
(
a

k

)(
2a− 2k + 1

a− c− k

)[
2b− n

b− d

]
,

Σ2 ≡
a−c∑
j=0

b−d∑
k=1

(−1)k+jqbk−(
k
2)
(
a

j

)(
2a− 2j + 1

a− c− j

)[
b

k

][
2b− 2k − n

b− d− k

]

+

a−c∑
j=0

b−(n+1)/2∑
k=b−d+1

(−1)k+jqbk−(
k
2)
(
a

j

)(
2a− 2j

a− c− j

)[
b

k

][
2b− 2k − n

b− d− k + n

]

+

a−c∑
j=0

n−1∑
k=b−(n−1)/2

(−1)k+jqbk−(
k
2)
(
a

j

)(
2a− 2j

a− c− j − 1

)[
b

k

][
2b− 2k

b− d− k + n

]
.

Using relation (3.4) and (3.5) again and following the similar path in the fourth case, we
are access to the conclusion

τ0(an+ b, cn+ d, q) ≡
((

a

c

))
τ0(b, d, q) +

((
a

c+ 1

))
τ0(b, d− n, q) (mod Φn(q)).

All of these five cases satisfy the congruence in Theorem 2 as desired.
The result in c < 0 case can be deduced easily due to the relation τ0(n, j, q) = τ0(n,−j, q),

then the proof is just like what we have done in the proof of Theorem 1.
Taking q → q2 in (1.1), we get[

an+ b

cn+ d

]
q2

≡
(
a

c

)[
b

d

]
q2

(mod Φn(q
2)).

Then there holds [
an+ b

cn+ d

]
q2

≡
(
a

c

)[
b

d

]
q2

(mod Φn(q)), (3.6)

since Φn(q) divides Φn(q
2).

Utilizing (3.6) instead of (1.1) if it is necessary, we find that the processes of proving
the congruence about F ∈ {T0, T1, t0, t1} are totally the same as that of proving the F = τ0
case, and therefore we omit their proofs here.
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4 Proof of Theorem 3

We split the summation of the following Delannoy number into two parts as usual. Firstly,
we consider the situation where n is an odd integer.

Dq(an+ b, cn+ d) =

an+b∑
k=0

q(
k+1
2 )

[
cn+ d

k

][
an+ cn+ b+ d− k

cn+ d

]
= Σ1 +Σ2,

where

Σ1 =

a∑
k=0

q(
kn+1

2 )
[
cn+ d

kn

][
an+ cn+ b+ d− kn

cn+ d

]
,

Σ2 =

a∑
j=0

n−1∑
k=1

q(
k+jn+1

2 )
[
cn+ d

k + jn

][
an+ cn+ b+ d− k − jn

cn+ d

]
.

This time, we need to deal with two different cases. The first case is b+ d ≤ n− 1. In
this case, modulo Φn(q),

Σ1 ≡
a∑

k=0

(
c

k

)(
a+ c− k

c

)[
b+ d

d

]
,

Σ2 ≡
a∑

j=0

n−1∑
k=1

q(
k+1
2 )

(
c

j

)(
a+ c− j

c

)[
d

k

][
b+ d− k

d

]
.

Then immediately we get the result

Σ1 +Σ2 ≡ D(a, c)Dq(b, d) (mod Φn(q)).

The other case is b+ d ≥ n. Then, modulo Φn(q),

Σ1 ≡
a∑

k=0

(
c

k

)(
a+ c− k + 1

c

)[
b+ d− n

d

]
,

Σ2 ≡
a∑

j=0

b+d−n∑
k=1

q(
k+1
2 )

(
c

j

)(
a+ c− j + 1

c

)[
d

k

][
b+ d− k − n

d

]

+

a∑
j=0

n−1∑
k=b+d−n+1

q(
k+1
2 )

(
c

j

)(
a+ c− j

c

)[
d

k

][
b+ d− k

d

]
.

It is not difficult to verify that for 0 ≤ k ≤ b+ d− n[
b+ d− k − n

d

]
≡

[
b+ d− k

d

]
≡ 0 (mod Φn(q)).

As a result,

Σ1 +Σ2 ≡
a∑

j=0

n−1∑
k=0

q(
k+1
2 )

(
c

j

)(
a+ c− j

c

)[
d

k

][
b+ d− k

d

]
≡ D(a, c)Dq(b, d) (mod Φn(q)).
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Now we consider the other situation where n is an even integer. Noticing that qn/2 ≡ −1
(mod Φn(q)), we have, modulo Φn(q),

q(
kn+1

2 ) ≡ (−1)k and q(
jn+k+1

2 ) ≡ (−1)jq(
k+1
2 ).

Therefore,

Σ1 +Σ2 ≡
a∑

j=0

n−1∑
k=0

(−1)jq(
k+1
2 )

(
c

j

)(
a+ c− j

c

)[
d

k

][
b+ d− k

d

]
(mod Φn(q)).

In order to finish proving Theorem 3, it only remains to show

a∑
j=0

(−1)j
(
c

j

)(
a+ c− j

c

)
= 1.

In fact,

a∑
j=0

(−1)j
(
c

j

)(
a+ c− j

c

)
=

(1)a+c

(1)c(1)a
2F1

[
−a,−c
−a− c

; 1

]
=

(1)a+c

(1)c(1)a

(−a)a
(−a− c)a

= 1,

where we have utilized the Chu-Vandermonde formula

2F1

[
−n, a
c

; 1

]
=

(c− a)n
(c)n

.

Now the proof is completed.
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