Bull. Math. Soc. Sci. Math. Roumanie
Tome 68 (116), No. 4, 2025, 387-415

Two modified inertial projection methods for solving quasimonotone
variational inequalities
by
Harvine L1, XiNGranG WaNG(?)

Abstract

In this paper, we provide two inertial projection methods with a novel nonmono-
tonic adaptive step size for solving variational inequalities governed by quasimonotone
and Lipschitz continuous operators in real Hilbert spaces. Compared with the general
subgradient extragradient method, our algorithms use a different half-space. Under
some suitable conditions, we obtain the weak convergence theorem of the first modified
inertial projection algorithm and the strong convergence theorem of the second mod-
ified viscosity-type inertial projection algorithm. Moreover, several numerical results
are given to illustrate the effectiveness and competitiveness of our proposed methods.
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1 Introduction

Throughout this paper, let H be a real Hilbert space with inner product (-,-) and induced
norm || -||. It is well known that the classical variational inequality problem (VIP, for short)
is defined as: find = € C such that

(Az,y —x) >0, Yy € C, (1.1)

where C' is a nonempty, closed, and convex subset of H and A : H — H is a continuous
mapping. The solution set of VIP is denoted by S.

The variational inequality problem is a key problem in nonlinear analysis, which has been
widely used in nonlinear programming, network equilibrium problems and complementarity
problems (see, for example, [7,12,19] and the references therein). So far, a number of
iterative algorithms for VIP have been proposed (see, for example, [1,4,5,15,17,18,27,33,35]
), we mainly focus on the projection-type methods.

One of the well-known methods for solving problem (1.1) in Euclidean spaces is the
extragradient method (EGM), which was presented by Korpelevich in [13]. In recent years,
the extragradient method has been extended to infinite spaces in various ways (see, for
example, [2,9,23,24,30]). The EGM needs to calculate two projection values onto the
feasible set per iteration, however, computing projection onto a general closed and convex
set might be difficult. Two famous methods were proposed to overcome the major drawback
of this method. The first algorithm is the subgradient extragradient method (SEGM), which
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was introduced by Censor et al. [3]. This method uses a projection onto a specific half-
space in place of the second projection onto C' in the EGM. The second method is the
Tseng extragradient method (TEGM), which was presented by Tseng [29]. This method
uses an explicit formula replaces the second projection onto C' in the EGM. Moreover, the
weak convergence results of the EGM, the SEGM and the TEGM were obtained when the
cost operator is pseudomonotone and Lipschitz continuous.

Recently, many authors are committed to investigating algorithms with inertial extrap-
olation terms, which can be used to speed up the convergence of iterative methods (see, for
example [6,8,14,25,26,31]). Inspired by Censor et al. [3], Yang [32] proposed a self-adaptive
inertial subgradient extragradient algorithm. It is of the form: Take A; > 0, 2,21 € H and
0<p<p<l,

Wy, = Ty + @ (Ty — Tp—1)

Yn = Po(w, — A Fwy,)

Ty o= {w € H : (0, — A Fwn — Yo, w — ) < 0}
Tpy1 = Pr, (wn — A FYn),

(1.2)

where

: {u(llwn — Ynll® + lZnts — ynl®)
min
2(Fwy, — Fyn, Tnt1 — Yn)
Ans otherwise,

7)‘71}7 if<Fwn_Fynaxn+l_yn>>07
)\n-i-l =

and 0 < ap, < ap1 <o, a < —20p — 14+ /80y +1/2(1 — 0y), 6y = 1_% {zn} converges
weakly to a solution of VIP when F' is pseudomonotone.

Thong et al. [28] proposed a novel projection method for solving pseudomonotone vari-
ational inequality problems and gave several numerical experiments to show that this algo-
rithm converges faster than the EGM and the SEGM. It is of the form: Take \g > 0,u; € H

oo
and p € (0,1), let {a,} be a nonnegative real sequence such that  «a;, < +oo,

n=1

v = Po(un — AnFuy)
Unt+1 = Pr, (uy) (1.3)
T,:={x € H:h,(z) <0}

where
hn(2) = (up — vy — A (Fup, — Fop), 2 — vy),

. ||t — vn | .
—_————— )\n 71}7 F n*F n 07
mm{HFUn—FUnH’ , o ifFu Uy F

A+ g, otherwise.

/\n+1 -

The sequence {x,} generated by algorithm (1.3) converges weakly to a solution of VIP
when the operator F'is pseudomonotone and Lipschitz continuous.

Motivated by algorithm (1.2) and (1.3), we propose two new inertial projection al-
gorithms for solving quasimonotone variational inequalities in this paper. Moreover, we
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present some numerical experiments to show that our algorithm converges faster than al-
gorithm (1.2), (1.3) and Algorithm 1 in [22].
Our contributions:
e We introduce two projection methods with single inertial extrapolation step to solve
the variational inequality problem in real Hilbert spaces, our methods accelerate the con-
vergence rates of the methods in [22, 28, 32] effectively. Our algorithm has the following
advantages: (1) both of our algorithms have an inertia term that speeds up the rate of
convergence; (2) we obtain weak convergence result and strong convergence result under
a weaker operator condition in our algorithms (A is quasi-monotone rather than pseudo-
monotone); (3) we take a modified generalized non-monotonic step size, which accelerates
the convergence rate effectively. ( Figure 1-4 in Numerical experiments show the superiority
of our algorithms’ step size)
e Under some suitable conditions, we obtain the weak convergence theorem of the first
modified inertial projection algorithm 1 and the strong convergence theorem of the second
modified viscosity-type inertial projection algorithm 2.
e We give numerical simulations to show that our proposed methods is more efficient and
faster than the related methods.

Our paper is organized as follows: Several definitions and lemmas are given in Sect. 2.
In Sect. 3, we present our method and analyse the weak convergence of our method. We
give numerical experiments to illustrate the feasibility of our methods in Sect. 4.

2 Preliminaries

Definition 2.1. The operator A : H — H is said to be
(i) L-Lipschitz continuous, if there exists a constant L > 0 such that

ii) p-strongly monotone, if there exists a constant ¢ > 0 such that
gly
(Ay — Az, y — x) > olly — |, Va,y € H.

(iii) monotone, if
(Ay — Az,y — x) >0, Va,y € H.

(iv) n-strongly pseudomonotone, if there exists a constant 7 > 0 such that
(Az,y —x) > 0= (Ay,y — @) > nlly —z|?, Va,y € H.
(v) pseudomonotone, if
(Az,y —x) > 0= (Ay,y —x) >0, Va,y € H.
(vi) quasimonotone, if

(Az,y —x) > 0= (Ay,y —x) > 0, Va,y € H.
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Clearly, (i) = (#ii) = (v) = (vi) and (#4) = (iv) = (v) = (vi), but the converses are not
always true.
The dual variational inequality problem (shortly, DVIP) is defined as: find « € C' such that

(Ay,y —x) =2 0,Vy € C. (2.1)

The solution set of DVIP is denoted by Sp. When A is quasimonotone, we have Sp is a
closed and convex subset of C'. Furthermore, since C' is convex and A is continuous, we
have Sp C S.

Lemma 2.2. ( [34]) Let C be a nonempty closed and convex subset of H. If either

(i) A is pseudomonotone on C' and S # 0,

(ii) A is the gradient of G, where G is a differential quasiconvez function on an open set
K>C

and attains its global minimum on C,

(iti) A is quasimonotone on C, A#0 on C and C is bounded,

(iv) A is quasimonotone on C, A # 0 on C and there ezists a positive number r such that,
for every v € C with ||v|| > r, there exists y € C such that ||ly|| < r and (Av,y —v) <0,
(v) A is quasimonotone on C, intC' is nonempty and there exists v* € S such that Av* # 0.
Then, Sp is nonempty.

Lemma 2.3. The following statements hold in H :

(i) |z +yl* = llzl* + 2(z,y) + [lyl|*>, ¥ z,y € H.

(ii)||x +yl|* < [|=]]> + 2(y, x +-y), V x,y € H.

(i) Az 4 (1 = Nyl|* = Allz[|* + (1 = Nlyll? = A0 =Nz —yl]?>, Vz,y € H, A€ R,

Lemma 2.4. Let C' be a nonempty closed and convexr subset of H and Pc be the metric
projection from H onto C. Then for any x,y € H and z € C, the following hold:

(i) |Pex — Peyl|® < (Pox — Pey, o — y).

(ii)| Pox — z||* < [lv — 2||* — || Pex — ||,

Lemma 2.5. For any x € H and z € C, then z = Po(z) if and only if
(x —z,y—2) <0,Vy eC.

Lemma 2.6. Let H be a real Hilbert space and let h be a real-valued function on H. Define
K :={x € H: h(z) < 0}. If K is nonempty and h is Lipschitz continuous on H with
modulus 6 > 0, then

dist(z, K) > 0~ max{h(z),0}, Vo € H,

where dist(z, K) denotes the distance function from z to K.

Proof. The proof is similar to Lemma 2.3 in [11]. d

Lemma 2.7. ( [16], Lemma 2.2) Let {¢n},{0n} and {0,} be sequences in [0,400) such
that

¢n+1 < ¢+ 9n(¢n - ¢n—1) +0p,Vn > 1, Z O < 400,

n=1



H. Li, X. Wang 391

and exists a real number 0 with 0 < 6, <0 <1 for alln € N. Then the following assertions
hold:

(1) 3 [dn — dn_1]+ < +00 where [t]+ = max{t,0} for any t € R;

n=1
(i) there exists ¢* € [0,+00) such that lim ¢, = ¢*.

n— oo

Lemma 2.8. ([20]) Let C be a nonempty subset of H and let {x,} be a sequence in H
such that the following two conditions:
(i) for each x € C, the limit of sequence {||z, — x||} exists;
(it) any weak cluster point of sequence {x,} is in C.
Then there exists x* € C' such that {z,} converges weakly to z*.
Lemma 2.9. ([21]) Let {a,} be a sequence of nonnegative real numbers, {a, } be a sequence

in (0,1) with Y a, = oo and {b,} be a sequence of real numbers. Assume that
n=1

Qp41 S (1 - Oén)an + anbna vn 2 ]-»
if limsup by, <0 for every subsequence {an,} of {an} satisfying likm inf(an,+1 — an,) >0,
— 00

— 00
then lim a, = 0.
n—oo

3 Convergence analysis

In this section, we show that the sequence {x,,} generated by Algorithm 1 converges weakly
to a point in Sp C S and the sequence {z,} generated by Algorithm 2 converges strongly
to a point in Sp C S under suitable conditions.

3.1 Modified inertial projection algorithm

Condition 1 The feasible set C' is a nonempty, closed and convex subset of H;
Condition 2 The operator A : H — H is quasimonotone and L-Lipschitz continuous;
Condition 3 The operator A : H — H satisfies the following condition:

if {x,,} C H, z,, = v* and liminf ||Az,| = 0, then Av* = 0;
n—oo

Condition 4 Sp # ();

Algorithm 1 Modified inertial projection algorithm

Iterative step:
1. Take the parameters p € (0,1) and A; > 0. Choose {f,,} such that 0 < 0,, < 6,41 < 1,

{an} C [0,00) such that > a, < +oo and {g,} C [1,00) such that lim ¢, = 1. Let
n=1

n—oo
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xg,x1 € H be given starting points. Set n:=1.
2. Compute
Wy = Tp, + en(xn - xn—l)a

If w, = y, or Aw, =0, STOP. Otherwize,

3. Compute
Tn+1 = PTn (wn)7
where
T, :={we H: h,(w) <0}

and

hn(w) = <wn —Yn — )‘n(Awn - Ayn)7w - yn>
Update

[ MG ||wn — | ,
min § T———————, Ay +ayn ¢, ifAw, — Ay, # 0,
/\n+1 = { HAwn - AynH } (31)

An + an, otherwise.

4. Set n <+ n+ 1, and go to 2.

Lemma 3.1. Suppose that Condition 2 holds, then the sequence {\,} generated by (3.1) is

o0
well defined and lim X\, = X and A € [min{#,\1},\1 + > ay]. Moreover, we also have
n—00 n—1

Han
/\n+1

|[Awp, — Ay, || < | wn — ynll- (3.2)

Proof. The proof is similar to Lemma 3.3 in [15]. |
Lemma 3.2. Assume that Condition 1-4 hold and {x,} is a sequence generated by Algo-
rithm 1. Then {x,} is bounded and nl;rr;o |wn — x*|| exists, where z* € Sp.
Proof. From Lemma 2.4, we have

[@nt1 = 2*||* = | Pr, (wn) = 2*[* < lwn = 2*[|* = [|2p41 — wa*. (3.3)
From Lemma 2.3, we have

l|lwn — $*||2 = |lzn + On(Tn — T01) — 93*”2
= [[(1+0n)(wn — %) = On(Tp—1 — 37*>||2

=1+ 0n)|zn — x*”Q = Onllwn—1 — :c*||2 + 0n (1 + )20 — $n71||2a
(3.4)

H33n+1 - wn||2 = Hxn+1 —Tn — an(xn - mn—l)H2
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= ||lzng1 — x> + 02|20 — Tn1 )| = 200 (Tpi1 — Ty Ty — Tr1)
> [|znt1 — xn”Q + 072L||xn - mn—le =20, |zpt1 — znl| (|20 — Tl
e anQ + ‘gillxn - mnlez = On(llzns1 — mnHQ + lzn — mnflllz)
= (1= 0n)[lzns1 — anz =0 (1= 0n)lzn — xn71”2~ (3.5)
Substituting (3.4) and (3.5) into (3.3), we get
lZnt1 = 2| < flwp — 2|* = lensr — wal®
< (L+0n)|[zn — 37*”2 = Onllwn—1 — 33*”2 + 0n (1 + )20 — xn—lnz
— (1= 0n)[[pt1 — anZ + 00 (1 = 0,)||zn — xn—1||2
= (1+0n)||zn — x*||2 = Onllwn—1 — x*||2 + 20, ||z, — xn71||2
— (1= 0n)l[Zn+1 — znll*. (3.6)
Define 'y, := ||z, — 2*[|? — Op||wn_1 — 2*||? + 20, ||z — 20 _1]|%
By the difinition of I',, and (3.6) we have
1 —Tn= ||$n+1 - x*”Q — Opyrl|zn — CU*HQ + 29n+1‘|xn+1 - anQ
— |lzn — z*HQ + Onl|wp—1 — x*”z — 20, ||z, — zn—le
< (@ 460)zn — I*HQ = Onllzn-1— 33*”2 + 20, ||z — mnlez
= (1=6n)llznt1 — CUn||2 = Ontr|lzn — $*||2 + 20041 (| Tn41 — CUHHQ
— |zn — Z‘*H2 + Onl|wp—1 — w*”Q — 20, ||z, — xn—IH2
= (0n = Ony1) |z — m*||2 + (20n41 + 0n — Df|znt1 — xn”2

< (Bnt1 = D|wnsr — zal®
1
< —i||$n+1 — o 1?. (3.7)
Hence, {T',,} is non-increasing (n > 1). Moreover, from the definition of T',, we obtain

llzn — x*”z =Ty +O0nllzn—1 — 55*”2 = 20n||zn — In—1||2

S en”xnfl - -'17*”2 + Fn

IN

1
ZHffn—l — 2P+ T

IA

1 . 1
4*2”%72 — 2P+ T+ e

1
oy = 2|+ (L 4o

4
* |12
Therefore, {x,} is bounded. Moreover {w,}, {yn}, {Aw,} and {Ay,} are bounded.
By the definition of T, 1 and (3.8), we have

Tri1 = —lznsr — 2 + Oppal|lzn — 27 = 20041 [ 2011 — 20
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< 9n+1||xn - x*||2
1 1
< 47”951 —z*|?+ §F1~ (3.9)

From (3.7) and (3.9), we get

1< 1 ) 4
137 ks = aal? STy = T < ey — o7 4+ 5T,

k=1
Therefore,
[eS) ) F1
D llznss —2al* < 5 < oo, (3.10)
n=1
Thus,
nhﬁn;(} |Znt1 — znll = 0. (3.11)

From (3.6) we get

i1 — 212 < (1+ On)llm — 277 = Onllzn_s — 2| + 20,2 — 1]
— (1= 0n)llzns1 =zl
< (14 0p) |20 — 2| = Opllzn—1 — 2*||* + 2600 |2 — 2 ?
= llzn = 217 + On(llzn — 2% = llzn—1 — 2*[|*) + 2600 ]| 20 — 20|

(3.12)

Invoking Lemma 2.7 in (3.12), we get lim ||a, — ¥ exists. O
n— oo

Lemma 3.3. Assume that Condition 1-4 hold and {x,} is a sequence generated by Algo-
rithm 1. Suppose lim ||y, — wy|| = 0. If v* is one of the weak cluster points of {x,}, then
n—roo

we have at least one of the following: v* € Sp or Av* = 0.

Proof. By Lemma 3.2, {x,,} is bounded. Hence we can let v* be a weak cluster point of {x,, }.

Then we can choose a subsequence of {z,}, denoted by {z,, } such that x,, — v* € H.

We consider the following two possible cases.

Case I: Suppose that limsup|Az,,|| = 0. Then lim ||Az,, || = liminf|Az,,| = 0.
k—o0 k—o0

—00
According to Condition 3, we obtain
Av* = 0.
Case II: Suppose that limsup || Az, || > 0. Then without loss of generality, we can choose
k

—00

a subsequence of {Ax,, } still denoted by {Ax,,} such that klim |Azp, || = My > 0.
— 00

From y, = Po(w, — A\ Aw,), we get

<wn — A Aw, — Yn,Y — yn> <0, Vy eC.
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So,

0 S <y’ﬂk — Wny, + )\leAw’I'Lk?y - y’ﬂk>
= <ynk — Wny,, Y — ynk> + >\nk<Awnk7y - ynk>

(3.13)
From lim ||w, — y,| = 0, we obtain
n—oo
0< likminf<Awnk,y — Wy, ) <limsup(Aw,, ,y — w,,) < o0, Yy € C. (3.14)
—00 k—o00

Based on (3.14), we consider the following two cases under case II:
Case 1: Suppose that limsup(Awy,,,y — wy,,) > 0,Vy € C. Then we can choose a sub-

k—oo
sequence of {wy, } denoted by {wy,, } such that lim (Aw,, ,y —wy, ) > 0. Thus, there
J j—o00 J J

exists jo > 1 such that <Awnk]_ Y — wnk]_> > 0,Vj > jo, by the quasimonotonicity of A on
H, we have

(Ay,y —wn, ) =2 0,y € C,j > jo. (3.15)
From w, = ,, + 0, (2, — zp—1) and (3.11), we have lim ||w, — z,| = 0, thus, w,, — v*.
n— oo

Letting j — oo in (3.15), we have (Ay,y — v*) > 0,Vy € C. Therefore, v* € Sp.
Case 2: Suppose that limsup(Aw,, ,y — wy,) = 0,Vy € C. Then by (3.14), we get

k—o0

lim (Aw,, ,y —wy, ) =0, Vy € C, (3.16)

k—o0

from which we get

1
(Awp,, Yy — Wn,,) + [(Awp,, Y — wy,)| + i 0, Yy € C. (3.17)
From klim |lwn, —xn, || = 0 and L-Lipschitz continuity of A, we have klim |Aws,, — Az, || =
—00 —00
0. Thus, lim ||Aw,, | = lim ||Aw,, — Az, + Azy, || = || lim (Aw,, — Az, + Az, )| =
k—oo k—o0 k—o0
I klim Az, || = M; > 0, we can find ko > 1 such that ||Aw,, || > 2, Vk > k.
—00
We set b, = Hﬁfi"’“w, then (Awy,,,b,,) = 1. Therefore, by (3.17), we get
7Lk
1
<Awnk,y + by, [|<Awnk,y — Wy, )| + m} - wnk> >0, Yy € C. (3.18)

From A is quasimonotone on H, we obtain

1 1
- . - |- > ,
<A<y+bnk {|<Awnk,y y"’">|+kz n 1D,y+bnk [|<Awnk,y w"k>|+k " 1} wnk> >0, VyeC
This implies that

<Ay,y + by, [|<Awnk,y — wp, )| + %—I—l} — wnk>
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y+bn, {|(Awnk,y—wnk>| + L}

> . —
> (Ay = Al + b, [ |(Awny = wi,)| + "

- wnk >

> _HAy - A(y + bnk |:|<Awnk,7y - wnk>| +

i)

[ 1y + b [[ (At y = wa,)

kE+1
1

i) o
> ~Lllbn, [[{Awn, .y — wnk>|+k+1]\| Iy -+ b [|{ A, = )]+ ] =
= A Ana n ) bn|:Ana_n 7j|—n

IIAwnk||<|< Wnyy Y — W k>|+kJrl [+ b | [{Awne sy = wni) | + 5= | = wni |

—2L 1
Z 3 (\<Awnk,y—wnk>|+k—+1)Mz, Yy e C k> ko, (3.19)

for some My > 0, where the existence of My is from the boundedness of {y—l—bnk [| (Awn,, , y—

wnk>| + kiil} - wnk}

From (3.16) we have klim (|<Awnk,y — Wp, )| + ﬁ) = 0,Vy € C. Thus, as k — oo in
—00

(3.38), we get (Ay,y —v*) > 0,Vy € C. Therefore, v* € Sp. 0

Theorem 3.4. Let {x,} be generated by Algorithm 1 such that Condition 1-4 hold and
Az # 0,V € C (otherwise, x € S). Then {x,} converges weakly to an element of Sp.

Proof. We first show that lim ||w, — y,|| = 0. We pick a point z* € Sp.
n—oo

Since z* be a solution to problem (2.1), we have
(AYn, z* —y,) < 0. (3.20)
From y,, = Po(w, — A\, Aw,) and Lemma 2.5, we get
(wp, — A AWy — Yn,y — yYn) <0, Yy € C. (3.21)
From and (3.20) and (3.21), we can deduce

) < - )\ (Awn - Ayn)vx* - yn>
< — Yn — )\ AU),“ yn> + )\n<Aynvx* - yn>
0.

IN

Using (3.2), we have

hn(wn) = <wn —Yn — )‘N(Awn - Ayn)zwn - yn>
= Hwn - yn”2 - )\n<Awn - Aynawn - yn>
> Hwn - yn||2 = MllAwy, — Aynl| |lwn — ynH

_yn||2

A
> [Jwn — yn”2 - qu)\ j-l
n
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3

= (1= pan==)lwn = yal*.

)\n+1
Since lim (1 — 1qp )\A" ) =1—pu> 17?“ > 0, there exists ng € N such that 1 — ug, /\A"
n—00 n+1 n+1
1_7“ for all n > ng. Therefore,
1—p
ho(wy) > THw" — 1. l?, Vi > ne. (3.22)

For all u,v € H, we have
[1n (1) = hn ()] = [{wn = yn = An(Awy — Ayn), u = v)|
< [lwn = yn = An(Awn — Ayn)| - [lu — ]|
< Ms|ju —vl|,

where the existence of M3 is from the boundedness of {w, — y, — An(Aw,, — Ay, )}. This
implies that h,(-) is M3-Lipschitz continuous on H. Using Lemma 2.6, we have

1
dist(wp, Ty) > —hp(wy). (3.23)
M;3
On the other hand, from Lemma 2.4, we have
[@nt1 —2*[1* = || Pr, (w,) — 2*|*
< Jlwn — 2|2 = || Pr,, (wn) — wall?

= ||lw, — z*||? — dist*(wy,, T},). (3.24)

From (3.22), (3.23) and (3.24), we obtain

11— 2
s = a2 < =22 = [ = gl2] = m. (3.25)
Ms 2
From w,, = &, + 0 (xy, — zp—1) and lim ||z,41 — 5] = 0, we have lim |w, — z,| = 0.
n—oo n—oo
Combining lim ||z,41 — 25| =0, lim ||w, — z,| = 0 and (3.25), we get
n—oo n—oo

11— 2
=l = yal?]” < —

* (12
A, 2 |

= 1 — 2|2

= (llwn = 2" + [Zp1 — ") (lwn — 2™ = [[En41 — 27[])
S M4||wn - $n+1||
< My(lwn — 2l + lwn — zngall), Yn 2 no (3:26)

where the existence of Mj3 is from the boundedness of {||w, — z*| + ||zpn+1 — z*||}.
Letting n — oo in (3.26), we get

lim ||w, —y.| = 0.
n— oo

By Lemma 3.2, {x,} is bounded, hence, let z be a weak cluster point of {z,}. Then there
exists a subsequence {x,, } C {z,}, such that z,,, — 2,k — oo, also from ||z, — yu| —
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0,n — oo, we get yn, — 2,k — o00. Since C is closed, we have that z € C. Since
Az # 0,Vx € C, we get Az # 0. By lim ||w, — yn|| = 0 and Lemma 3.3, we get z € Sp.
n—roo
Therefore,
(1) by Lemma 3.2, lim ||z, — z|| exists for any z € Sp,
n—oo
(2) every sequential weak cluster point of {z,} is in Sp.
Using Lemma 2.8, we get {x,} converges weakly to a point in Sp. 0

3.2 Modified viscosity-type inertial projection algorithm

Condition 5 Let {a,} C (0,1) such that lim a, =0and > a, = oo, {£,} be a positive

sequence such that lim &= = 0;

n—oo &n

Condition 6 The mapping f : H — H is a contraction mapping with contraction parameter
B €[0,1).

Algorithm 2 Modified viscosity-type inertial projection algorithm

Iterative step:

Initialization: Take the parameters p € (0,1), § > 0 and A; > 0. Choose {a,} C [0,00)
o0

such that > a, < +o00 and {¢,} C [1,00) such that lim ¢, = 1. Let zg,z; € H be given
n=1 n—00

starting points. .

Step 1. Given the current iterates x,,_; and x,. Choose {6, } such that 0 < 6,, < 6,, with

0, defined by

: &n } ,
R min{ @, —————— ¢ ifx, # Tho1,
g, _ Jmin{o =g i # (3.27)
0, otherwise,
compute
Wy, = Ty, + en(xn - xnfl)a
Step 2. Compute
Yn = PC(wn - /\nAwn)~
where the step size \,t1 is updated by
. MQnHwn - ynH .
min { BT I8 e b, i Aw, - Ay, £ 0,
Ant1 = | Awn, — Ayl (3.28)

Ao+ an, otherwise.

If w,, = y, or Aw, =0, STOP. Otherwise,
Step 3. Compute
Up = PT,L (wn)a

where
T, :={we€ H : h,(w) <0}
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and
ho(w) := (W — Yo — M (Awy, — Ayn),w — yn).
Step 4. Compute
Tpt1 = o f(25) + (1 — an)ug.

Set n:=n+ 1, and go to Step 1.

Remark 3.5. By Condition 5, we can easily verify the following results from (3.27):

.0 .
lim — ||z, — zp-1]| =0, lim 0,]x, — z,-1] = 0.

Lemma 3.6. Let {z,} be a sequence generated by Algorithm 2. Then {x,} is bounded and
the following inequality holds under Condition 1-6, where z* € Sp :

. 2an(1 - ﬂ))nxn . $*||2 + 2an(1 - 6){20471@3

lonss -2 <(1

+Q22((1_;))%||1:n—1:n_1+ 1—ﬂ<f(x ) =2 Ty — >}
1—a,)? [1— 2
- (1—§n/)s (sz) lwn ="

Proof. First, we show that {x,} is bounded. From (3.25), we have

[un — 27| < [Jwn — 27|

=||zn + Op(2y — Tp—1) — x|

0
< an — 2| + an— ||z, — Tp_1||
Qp
<lzn — 27| + an@, (3.29)
where the existence of ()1 is from lim 2’" Ty — Tp—1] = 0.
n—o0 n

From (3.29) and Condition 6, we obtain
@t = 2*| = llanf(@a) + (1 = an)un - a*|
< anllf(@n) = @]l + (1 = an)un = ”|
< anllf(@a) = F@)+ anll F@*) = 2| + (1= an) (lan = 2" + 00 Q1)
< (anB+ 1= an)an — 2" + an (If(@") = 2" + (1 - an)Q1)

[f(z") — ="l + Qu
1-p

=1 —an(l = p))llzn — 2" + an(l - 5)

||f($*)—x*||+Q1}
) 176

gnmxﬂun—xw
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||f(w*)—x*||+Q1}
) 1_ﬁ N

< max{”xl — 2|

This implies that {z,} is bounded.
Using Cauchy-Schwartz inequality, we obtain

lwn = &*[|* = ||z + O (@n — Tn1) — 27|
< |lwn — x*HZ + 20|20 — || (|20 — Tp-1| + 9721”5571 - mnlez
< lwn — 2|7 + 3Qabn ]|z — Tall, (3.30)

where Qs 1= sug{”mn — |, OnllTn — zn—1||}-
ne
Applying Lemma 2.3, (3.25) and (3.30), we get

lzns1 = 2" = llon f(@n) + (1 = an)un — ™|
=11 = an)(un — %) + an(f(zn) — )|

<(1- O‘n)zuun - x*HQ + 20, (f(2n) — 2", 2pp1 — x*>

. 1 1—p 2
< (0= an*{lwn = o1 = [ 52 55 E hon — ]}

+ 200 (f(xn) — %, Tpe1 — )

2M3
+ 2an<f(xn) - f(x*)vanrl - $*> + 204n<f(1'*) - x*,$n+1 - 1'*>

2 _ O 1 —p\? 4]
< (1= an)?[llen =212 + 3Qaan " llew = @il = (S5 ) lewn = vl

IM;

+ 20 Bllwn = 2| fenr — 27| + 200 (f(27) = 2%, 2pga — 27)

- . 0 1 _ 2 -
< (1= ) llen = #7112 + 3Qaan " — a1l = (5 ) ln = all®

oM,
+ anB(zn — 2** + |znt1 — 27)1%) + 200 (f (2) — 2%, 2py1 — 27)

= (1= an)? + anB)llen = "2 + anBllansa — 2|

- . 0n ]._l,L 2 -
< (1= an)?[llen = 212 + 3Qaan " llew = il = (S5 ) leon =

+3Qa0n (1 — 02l — | - (1~ )2 () — g
2 nan n n n—1 n 2M3 n n
+ 20, (f(x") — 2", xptq — aF).
From this, we have

1—2ap, + a2 + o, 3Q2(1 —ay)? 6,

241 — ¥ < 1—a,f Hxn—x*HQ‘Fwanafnnxn — Tn—1]|
2an, * X * (l_an)Z(l_N)2 4
1 =20, + a8 112 o -
= T o — 4 T el |
3Q2(1 — a,)? 0, 20y,

1—anp “ Qp B 1—oanp
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7(170[”)2(1,”)2“11] —y H4
1—a,8 \ 2M; oo

1_20471(1_6) %12 20‘71(1_6) anQS
<(1- "2 P -
<( 1—anB Ylzn =1 + T—anB {2(1—5)
3Q2(1 — ay,)? 6, 1 . N .
22((1_5))%|$n — Tn—| + m(f(x ) =2 T — T >}
(1—an)?® (1 —p\2 4
=g (G ) e —wl (3:31)
where Q3 := sup{||x,, — z*||* : n € N}. This completes the proof. O

Lemma 3.7. Assume that {w,} and {y,} are generated by Algorithm 2 and Condition 1-6

hold. Suppose that there exists a subsequence {wy, } of {w,} such that {w,, } = v* € H

and klim |Yn), — wn, |l = 0, then we have at least one of the following: v* € Sp or Av* = 0.
— 00

Proof. By Lemma 3.6, we know that {x,} is bounded, then {w,} is bounded. Hence we

can let v* be a weak cluster point of {w,}. Then we can choose a subsequence of {w,},

denoted by {wy, } such that w,, — v* € H.

We consider the following two possible cases.

Case I: Suppose that limsup || Aw,, || = 0. Then lim
k— o0 k—o0

According to Condition 3, we obtain

|Aw,, || = lminf | Aw,, || = 0.
k—o0

Av* =0.
Case II: Suppose that limsup || Awy, || > 0. Then without loss of generality, we can choose
k— o0
a subsequence of {Aw,, } still denoted by {Awy, } such that klim | Aw,, || = P1 > 0.
—00
From y,, = Po(w, — A\, Aw,), we get
<wn — AAw, — Yn, Y — yn> <0, Vy e C.
So,
0< <ynk — Wn, + )‘nk-,Awnmy - ynk>

= <ynk — Wny,, Y — ynk> + >\nk <Awnkay - ynk>

= <ynk — Wny,, Y — ynk> + >\nk <Awnkay - wnk> + )\nk <Awnkawnk - ynk>7 Vy cC.
(3.32)

From lim ||wp, — yn,|| = 0, we obtain
n—oo
0< likminf<Awnk,y — Wy, ) < limsup{Aw,, ,y — wp, ) < oo, Vy € C. (3.33)
—+0 k—oo

Based on (3.33), we consider the following two cases under case II:
Case 1: Suppose that limsup(Awy,, ,y — w,,) > 0,Vy € C. Then we can choose a sub-

k— o0
sequence of {wy, } denoted by {wy, } such that lim (Aw,, ,y —wy, ) > 0. Thus, there
J j—00 J J
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exists j; > 1 such that (Awnk]_ Y — wnkj> > 0,V > j1, by the quasimonotonicity of A on
H, we have

Letting j — oo in (3.34), we have (Ay,y — v*) > 0,Vy € C. Therefore, v* € Sp.
Case 2: Suppose that limsup(Aw,, ,y — wy,) = 0,Vy € C. Then by (3.33), we get

k—o0

lim (Awy, ,y — wy,) =0, Yy € C, (3.35)

k—o0

from which we get

1
(Awy, ,y — wp,) + [(Awp,,y — wp, )| + il >0, VyeC. (3.36)

From hm | Aw,,, || = P1 > 0, we can find k; > 1 such that ||Aw,, || > &L, Vk > k.

We set bnk ”lf;}" 72> then (Awn, , by, ) = 1. Therefore, by (3.36), we get
(Awngsy + boy [[{Awny,y = wn, )] + ! ] —wa ) >0, vy eC (3.37)
k) k k? k k + 1 k ’

From the quasimonotonicity of A, we obtain for all y € C,

1 1
<A(y+bnk |:|<Awnk7y_ynk>‘ + m})»y"_bnk [‘<Awnwy_ wnk>| + m} _wnk> > 0.
This implies that

<Ay,y + by, [|(Awnk,y — wp, )|+ %H} - wnk>

-+ b Ay — )+ ]

> —
> (Ay = Aly + b, [ (Awny = wi,)| + i

)

1
> _ _ _ _— . _
> —||Ay — A(y + by, |:|<Awnk’y W, )| + kot 1} M- ly + bn, {|<Awnk>y ()

il

]~ el
k+1 e
1
> =Ll [|( Aty = 0] + g |1 B+ b [y = )+ | =
= (KA Mt ) -y + b [[44 W+ ] =
= ||Awnk|| Wnyr Y — Wny, k+ 1 Yy i Wny Y — Wy, kot 1 Wy,
—2L

> - — > ,
- P (‘<Awnk’y w’ﬂk>|+ k+1)P27 VyEC k kOv (3 38)

for some P, > 0, where the existence of Ps is from the boundedness of {erbnk {|<Awnk JY—

W) + ] = W }-
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From (3.35) we have khj& (|<Awnk_,y — Wy, )| + %4—1) = 0,Vy € C. Thus, as k — oo in
(3.38), we get (Ay,y —v*) > 0,Vy € C. Therefore, v* € Sp. d

Theorem 3.8. Let {x,} be a sequence generated by Algorithm 2 such that Condition 1-6
hold and Ax # 0,Vx € C. Then, {x,} converges strongly to an element p € Sp C S, where

p:PSDOf(p)'

Proof. From Lemma 3.6, we have

1 —2a,(1-0) 20, (1 = B) y anQs
[2ps1 —p|* < (1 - W)Hxn - pl*+ 1— B {2(1 —5)
3Q2(1 — a,)? 6, 1
+ Q;él_;))annxn —Tp_1| + m(f(l’) — Dy Tnt1 —P>}~ (3.39)

Next, we claim that the sequence {||z, — p||} converges to zero. Applying Lemma 2.9 to
(3.39), we know that it is sufficient to show limsup(f(p) — p,Zn,+1 — p) < 0 for every

k—o0
subsequence {|z,, — p||} of {||zn — p||} satisfying
timinf(, 1~ — 2, I} = 0. (3.40)

From Lemma 3.6, we obtain

(1 —an,)? 11— 2
" () e = gl

1—an B \ 2M;3
< (1- 28I ol ~ o —
e e R e~
+ ﬁ(f(p) — Dy Tyt —p>}- (3.41)

Letting k — oo in (3.41), applying klim ap, = 0 and (3.40), we obtain
— 00

lim ||wp, — Yn, | = 0. (3.42)

k—o0

Using the definition of w,, and Remark 3.5 we have
lim ||wp, — @, || = 0. (3.43)
k—o0

Combining (3.42) and (3.43) we have
klim |Zn, — Yn, |l = 0. (3.44)
—00

Using Lemma 2.4 we get

[tn, = plI* = |1 Pr,,, (wn,) = pII* < 1w, = plI* = lltn, — wn, || (3.45)
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On the other hand,

wn,, = pll = lzn, + On, (@, — Tn,—1) — pll
0
< ||mnk —pl + O‘nk&”xnk - xnk—ln
Olny,
< lzn, = pll + o, Qa,
6
where Qg = sup { 225 2, — 7,1}
keN 'k

Thus, we have

[tn, =Pl < llwny, = Pl = [fny, = wn, |12
< (lzny = pll + a0, Qa)? — lluny, — wn, |1?
< llzn, _pH2 + ank(anin + 2)|2n, — plQ4) — |lun, — wnk||2
< ln, = pI* = llun, = wn, | + @0, Qs, (3.46)

where Q5 = 2u§ {anin +2||zp, fp||Q4}.
€
Using Condition 6 and (3.46), we get

HxnkJrl _pH2 = ||Oénkf(l.nk) + (1 - ank)unlc _p||2
= Hank (f(x’ﬂk) - f(p) + f(p) _p) + (1 - ank)(unk _p)H2
< an |f(@ny) — f(p) + f(p) —p||2 + (1 = any)lun, — p||2

2
< (£ @n) = FON+ 1 G) = pl) + (1= ) tm, — P
2
< an, (low = ol + 15 ®) = 1)+ (1= an)llun, — Il
< any @, = 0l + 200, 20, =2l £ (0) =PIl + an,|1f(p) = pII?
+ (1= any) (1o, = I = [, = war 12 + 0, Qs )

< ||$7lk _p”2 + ankQG - (1 - ank)llunk - wnkHQ?

where Q5 = sup { 2/l = pll 11f(p) = pll + /() = pI* + (1 @, )Qs }.
keN

From this we have

(1= an)ltn, = wo [I* < lzn, = pl* = llzn1 = pl* + o, Qs. (3.47)

Combining (3.40) and (3.47), we get
lim ||tp, — wy, || =0. (3.48)
k—o0

Consequently,

||‘Ink+1 - Ink” < Qi ||f(xnk) — Ty, ” + (1 - ank)”u"k — Ty, ”
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< | f @) = @l + (1= @) (flumg = W, ||+ 10, = 1) = 0.
(3.49)

Since {z,, } is bounded, there exists a subsequence {xnkj} of {z,, } such that {CEnkJ} -z
and

limsup(f(p) — p, ¥n, —p) = lim (f(p) = p,&n,; —p) = (f(p) —p.2—p).  (3.50)
k— o0 J—roo J
By lim ||wn, — 2n,]| = 0, we have {w,, } — z. Moreover, from lim ||w,, — yn, || =0
n—oo J J—o0 J J

and Lemma 3.7 we get z € Sp.
From p = Pg, o f(p), (3.50) and Lemma (2.5), we obtain

limsup(f(p) — p,zn, —p) = (f(p) —p,2 —p) <0. (3.51)

k—o0

Combining (3.49) and (3.51), we get

limsup(f(p) — p, Tn,+1 — p) = limsup(f(p) — p, xn, —p) = (f(p) —p,z —p) < 0. (3.52)

k—o0 k—o0

Applying Lemma 2.9 to (3.39), we deduce that {x,} converges strongly to p. ]

4 Numerical experiments

In this section, we provide two numerical experiments to compare our proposed algorithms
with some existing related algorithms. All the codes were written in MATLAB R2022b and
performed on a PC Desktop Intel(R) Core(TM) i5-12500H @ 2.50 GHz, RAM 16.0 GB.

In all these examples, we present numerical comparisons of our proposed Algorithm 1
and Algorithm 2 with Algorithm 3.1 of Thong et al. in [28], Algorithm 1 of Shehu et al.
in [22], Algorithm 3.1 of Yang in [32].

Example 4.1. Consider an operator A : R™ — R™ in the form of A(x) = Mz + ¢ [10],
where

M=NNT+G+D

N e R™*™ G € R™*™ is a skew-symmetric, and D € R™*™ is a diagonal matrix, whose
diagonal entries are nonnegative (so M is positive definite), ¢ is a vector in R™. The feasible
set is

C={z=(z1, ,xm) ER™:2; > -1,i=1,---m}.

It is clear that A is monotone and Lipschitz continuous with Lipschitz constant L = || M||.
For experiments, all the entries of N, G are generated randomly and uniformly in [-2, 2],
the diagonal entries of D are in (0,2) and ¢ is equal to the zero vector. It is easy to see
that the solution of the problem in this case is * = 0.
The starting values zo = x1 = ones(m, 1), other parameters of our proposed algorithms
and the compared algorithms are set as follows:
e Yang 2021 p = 0.5, yo = 0.6, Ay =0.5/L, o, = 0.1;



406 Inertial projection methods for quasimonotone variational inequalities

e Shehu et al. 2022 p©=0.5, A\ =0.5/L, 6,, = 0.8, o, = 0.2;

e Thong et al. p=0.5, \g =0.5/L, a, = 1/(n+ 1)

eOurAlg. 1 =05\ =05/L,0,=08,a,=1/(n+1)2, ¢, = (n+1)/n;

e Our Alg. 2 p =05, A\ =05/L, 0, =08, a, = 1/(10n + 1), &, = 100/(n + 1)?,
a, =1/(n+1)% gn = (n+1)/n.

The maximum number of iterations 1000 serve as a common stopping condition for all
methods. At the nth step, we utilize D,, := ||x,, —2*|| to calculate the iteration error. First,
we test the effect of different parameters a,, and ¢, on the proposed methods with different
dimensions, as shown in Figures 1-4. Next, Figures 5-8 and Table 1 show the results of the
proposed methods compared to some related ones in different dimensions.

5
10 — — —OurAlg. 1a =0 =1
_____ Our Alg. 12 =1/(n+1)%.q =1
" \ Our Alg. 1 ar‘=1/(n+1)21qn=(n+1)/n
™.
\\&
NS
\\\~ 2
_ 5 S e
= 10 TR W,
~. ~
= \ s s
= \ TR g
d . ey = ey
o g0 i
\\ ~
¥ T
\.\\ \"\
\'\
15 ‘
10 \\\
\\4\
1020 : S ; ‘
0 200 400 600 800 1000

Number of iterations

Figure 1 The behaviour of our Algorithm 1 for different a,, and g, in Example 4.1(m=20).
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Figure 2 The behaviour of our Algorithm 1 for different a,, and ¢,

10'
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in Example 4.1(m=50).

Figure 3 The behaviour of our Algorithm 1 for different a, and ¢, in Example 4.1(m=70).
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)
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Figure 4 The behaviour of our Algorithm 1 for different a,, and ¢, in Example 4.1(m=100).
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10’
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Figure 8 m = 100 for Example 4.1

Table 1 Numerical results for all algorithms under different dimensions in Example 4.1

m=20 m=>50 m="70 m=100
Algorithms Dn CPU Dn CPU Dn CPU Dn CPU
Yang 2021. 0.0090 0.0065 0.1501 0.0038 0.1942 0.0068 0.2681  0.0084
Shehu et al. 2022  1.9832e-04  0.0053  0.0667 0.0031  0.1208 0.0046  0.1435 0.0056
Thong et al. 4.7412¢-04  0.0051  0.0680 0.0030  0.1208 0.0048 0.2009  0.0054
Our Alg. 1 1.7966e-13  0.0022  2.7937e-04  0.0030 0.078 0.0043  0.0452  0.0058
Our Alg. 2 1.4033e-15 0.0021  1.1364e-05 0.0029 4.2681e-04 0.0043 0.0032  0.0057

Example 4.2. Consider the problem VIP whenever H is the classical L?[0, 1] space with

the inner product and norm given by

@)= | (b, o] = ( / e dt) . VayeH

Consider an operator A: H — H is given by
(Az)(t) = max{0,z(¢)}, t € [0,1] Vx € H.

1/2

It should be noted that the operator A in the example above is 1-Lipschitz continuous and
monotone on H. Let C := {& € H : ||z|| < 1} be the unit ball. The solution of the
variational inequality is «*(¢) = 0. It is known that
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The parameters of our proposed algorithms and the compared algorithms are set as
follows:
e Yang 2021 p = 0.5, up = 0.6, Ay = 0.5, o, = 0.1;
e Shehu et al. 2022 4 =0.5, \; =0.5, 6, =0.8, a, = 0.2;
e Thong et al. p=0.5, \g = 0.5, i, = 1/(n+ 1)
eOurAlg. 1 =051 =050,=08a,=1/(n+1)% g, =(n+1)/n;
e Our Alg. 2 =05 A =05, 6, =08, a, = 1/(10n + 1), &, = 100/(n + 1),
an=1/(n+1)% ¢, = (n+1)/n.

We choose the stopping criterion as error D,, = ||z, (t) —2*(t)|| < 1075. All the integrals
are computed by the trapezoidal formula. The numerical results are described in Figure
9-11 and Table 2.

Thong et al.
—*— Shehu et al. 2022
—4~A— Yang 2021
——Our Alg. 1

Our Alg. 2

0 10 20 30 40 50 60
Number of iterations

Figure 9 x0(t) = x1(t) = > for Example 4.2
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0 —#A— Yang 2021
10 ——Our Alg. 1
< Our Alg. 2
10" F i
102 F 1
c

[a]
10° 1
104+ E
10°F E
10,5 L L L L L L

0 10 20 30 40 50 60 70
Number of iterations
Figure 10 z(t) = z1(t) =t + sint for Example 4.2
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Figure 11 zo(t) = z1(t) = exp(t) for Example 4.2
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Table 2 Numerical results for all algorithms at different initial values in Example 4.2

2o(t) =x1(t) =12 wo(t) = z1(t) =t +sint  x0(t) = 21(t) = exp(t)

Algorithms Iter. CPU Iter. CPU Iter. CPU

Yang 2021 40 0.0072 43 0.058 45 0.0084
Shehu et al. 2022 60 0.0076 64 0.0067 66 0.0086
Thong et al. 17 0.0053 19 0.0046 19 0.0059
Our Alg. 1 16 0.0038 17 0.0041 17 0.0031
Our Alg. 2 13 0.0035 14 0.0038 15 0.0030
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